
Analysis Module¶
flyeye.analysis
provides tools for detecting periodic spatial patterns of expression in the developing Drosophila eye field.
Spatial Correlations¶
Tools for quantifying expression similarity as a function of distance between cells.
- class flyeye.analysis.correlation.CorrelationData(d_ij=None, C_ij=None)[source]¶
Container for correlations between 1-D timeseries.
Attributes:
d_ij (np array) - pairwise separation distances between measurements
C_ij (np array) - normalized pairwise fluctuations between measurements
- classmethod bootstrap(x, y, confidence=95, N=1000, bins=None)[source]¶
Evaluate confidence interval for aggregation statistic.
Args:
x (np array) - values upon which samples are grouped
y (np array) - values upon which aggregate statistics are evaluated
N (int) - number of repeated samples
confidence (int) - confidence interval, between 0 and 100
bins (np array) - bins within which the statistic is applied
Returns:
centers (np array) - centers of distance bins
uppers, lowers (np array) - statistic confidence interval bounds
- static get_binned_stats(x, y, bins, statistic='mean')[source]¶
Group samples into x-bins and evaluate aggregate statistic of y-values.
Args:
x (np array) - values upon which samples are grouped
y (np array) - values upon which aggregate statistics are evaluated
bins (np array) - bin edges
statistic (str) - aggregation statistic applied to each bin
Returns:
centers (np array) - bin centers
stats (np array) - aggregate statistic for each bin
- visualize(ax=None, null_model=False, scatter=True, confidence=True, zero=True, ma_kw=None, nbootstraps=100, color='k', max_distance=500)[source]¶
Plot pairwise normalized fluctuations versus pairwise distances.
Args:
ax (mpl.axes.AxesSubplot) - if None, create figure
null_model (bool) - if True, shuffle d_ij vector
scatter (bool) - if True, show individual markers
confidence (bool) - if True, include confidence interval
zero (bool) - if True, include zero correlation line for reference
interval_kw (dict) - keyword arguments for interval formatting
ma_kw (dict) - keyword arguments for moving average smoothing
nbootstraps (int) - number of bootstrap samples for confidence interval
color (str) - color used for confidence interval
max_distance (float) - largest pairwise distance included
Returns:
ax (mpl.axes.AxesSubplot)
- class flyeye.analysis.correlation.SpatialCorrelation(channel, data=None, y_only=True)[source]¶
Object for evaluating spatial correlation of expression between cells.
Attributes:
channel (str) - expression channel for which correlations are desired
y_only (bool) - if True, only use y-component of pairwise distances
Inherited attributes:
d_ij (np array) - pairwise separation distances between measurements
C_ij (np array) - normalized pairwise fluctuations between measurements
- static from_experiment(experiment, channel, cell_type='pre', y_only=False, discs_included='all', **selection_kw)[source]¶
Instantiate a SpatialCorrelation instance for all specified cells in a flyeye.Experiment instance.
Args:
experiment (flyeye.Experiment)
channel (str or int) - channel for which correlations are desired
cell_type (str) - type of cells to select
y_only (bool) - if True, only use y-component of data
discs_included (list or str) - included discs, defaults to all
selection_kw: keyword arguments for cell position selection
Returns:
corr (analysis.correlation.SpatialCorrelation)
- classmethod get_covariance_vector(vector)[source]¶
Get upper triangular portion of pairwise expression covariance matrix.
Args:
vector (1D np.ndarray) - expression levels for each cell
Returns:
covariance (1D np.ndarray) - pairwise fluctuations, ordered row then column
- classmethod get_distances_vector(data, y_only=False)[source]¶
Get upper triangular portion of pairwise distance matrix.
Args:
data (pd.Dataframe) - cell measurements including position data
y_only (bool) - if True, only use y-component of cell positions
Returns:
distances (1D np.ndarray) - pairwise distances, ordered row then column
Spectrogram¶
Tools for statistical detection of periodic spatial patterns, primarily via the AstroML library.