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ABSTRACT

Quantitative Analysis of Cell Fate Decisions

Sebastian Michal Bernasek

Organismal development depends upon countless cell decisions to adopt particular fates at the

appropriate time and place. These decisions are executed by systems of biochemical reactions

called regulatory networks. Elucidating the general principles underlying the structure and

function of these networks is vital to understanding all developmental processes, as well as

the diseases that arise when they fail.

Prior studies of regulatory networks, and the decisions they implement, have heavily

relied upon qualitative analysis of experimental data. It has since become clear that quan-

titative strategies are needed to unravel the complexities of systems-level behavior. The

research enclosed in this dissertation therefore combines chemical engineering, computer

science, statistics, and experimental data to quantitatively explore how regulatory networks

reliably coordinate cell fate decisions.

The findings are consolidated into three distinct chapters. The first two are anchored

to a common model system of the Drosophila larval eye. They deploy an assortment of novel

computational tools, mathematical models, and statistical methods to derive meaningful

insight from experimental measurements of the processes that govern cell fate decisions

during retinal patterning. The final chapter introduces a mathematical modeling framework
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to lead the development of an exciting new hypothesis; auxiliary negative regulators enable

development to proceed more quickly by mitigating erroneous cell fate decisions when cells

are rapidly metabolizing.

Beyond their insights into the mechanics of cell fate decisions, these efforts have

spawned several computational tools that may prove valuable to the broader community. All

of these resources have been made freely available (see Appendix 5.4), with the hope that their

continued development will contribute toward a more quantitative future for developmental

biology.
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CHAPTER 1

Introduction

The natural world presents a stunning variety of multicellular organisms. We tend

to distinguish them by their physiological traits. After all, we recognize penguins by their

unusual stature, black and white fur, long beak, and impressive ability to wobble around

on ice. These stereotyped features are a culmination of many complex cellular processes,

collectively known as development.

Development begins with a single cell, with subsequent growth and division events

driving progression toward adulthood. Cells acquire increasingly specific roles and functions

as growth proceeds, ultimately giving rise to stereotyped adult morphologies. This process,

known as lineage restriction, demands that each cell decides to pursue the correct fate at the

appropriate time and place [1].

Cell fate decisions are remarkably robust, collectively yielding consistent phenotypes

amidst the vast array of conditions encountered in natural environments. They are so reliable

that we often take them for granted. After all, it is hard to imagine a scenario in which

we might mistake another human for a penguin. However, they can and do make mistakes

with dire consequences for human health [2–4]. Researchers therefore continue to study these

complex processes in the hope that they might one day be able to control their behavior;

either to exploit them in novel biotechnologies, or rectify the diseases that arise when they

fail. Research efforts are predominantly motivated by two fundamental questions. First, how

do cells make decisions? Second, how do they make them reliably?
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This dissertation addresses subtle aspects of both questions by combining chemical

engineering, computer vision, and statistics to extract meaningful insight from experimental

data. The remaining sections of this chapter serve to prime the reader with the context

needed to situate the presented findings within the broader literature.

1.1. Molecular origins of cell fate decisions

Early experiments in the common fruit fly demonstrated that developmental processes

are encoded in the genome [5, 6]. Genetics were therefore believed to provide a predefined

road map for a the journey from embryo to adulthood, inspiring researchers throughout the

twentieth century to probe the roles of individual genes in coordinating adult phenotypes

[7–9]. Most of their efforts embraced a common philosophy; break something and see what

happens. In Drosophila, the genes themselves bare the legacy of this approach, as they are

predominantly named after the phenotypes that emerge in their absence. Perturbing eyeless

or wingless may now seem rudimentary, but these types of genetic perturbations were vital

to the discovery of genetic components and architectures that dictate cell fate decisions in all

organisms [9–11]. They revealed that some genes confer pleiotropic functions across several

stages of development, while others are limited to a single context [10, 12, 13]. They also

showed that some genes are only essential for proper development when others are absent,

making them unnecessary under normal conditions [14–16]. Moreover, Drosophila continues

to be a prominent model system for studying developmental processes today, owing to its

conveniently short life cycle, wealth of prior knowledge, and deep library of available genetic

machinery [17–19].

Among these tools, gene-specific reporters augment traditional genetic perturbations

by providing localized readouts of transcript and protein abundance. Researchers can now

break something and see what happens to specific components of the developmental program.
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Reporters have proven particularly useful for monitoring the activities of transcription factors;

proteins that bind the promoter region of other genes in order to modulate their expression.

Multiple transcription factors may interact with each other, allowing for the assembly of gene

regulatory networks (GRN) that integrate upstream signaling cues to elicit specific changes

in gene expression [20, 21].

GRNs thus arm cells with a chemical mechanism to orchestrate cell fate decisions

in space and time. A prominent example occurs during the during the earliest stages of

Drosophila embryogenesis, where spatial morphogen gradients drive variegated expression

of the Gap genes [22, 23]. The expressed proteins trigger subsequent developmental events

in a concentration-dependent manner, inducing localized cascades of GRN activity that

ultimately give rise to distinct morphological segments [24]. The embryonic landscape of

Gap gene expression thereby defines a template for later stages of patterning. Developmental

success is contingent upon GRNs tightly controlling the spatial precision of the template over

time [25]. Thus, segment polarity definition exemplifies a broader role of GRNs; they confer

positional information to inform downstream cell fate decisions [26].

The resolution of positional information is thought to be refined over time. This

assertion is in part based on experimental studies of retinal patterning in the Drosophila eye,

a setting with an enduring experimental legacy that continues to garner attention [11, 17]. It

remains popular in part because the temporal history of cell fate decisions is visibly encoded

in the eye imaginal disc. During the third larval instar, a wave of differentiation steadily

progresses across a disordered pool of multipotent cells (Fig. 1.1A) [27, 28]. Differentiating

cells propagate this morphogenetic furrow (MF) by relaying extracellular cues downstream.

Decades of experiments have steadily revealed how cells interpret the signals and commit to

particular fates (Fig. 1.1B) [29]. Fate-specific reporters have shown that R8 photoreceptor

neurons are recruited from pools of multipotent cells at the leading edge of the furrow [30].
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The first cell to differentiate uses paracrine signaling to inhibit differentiation among its

neighbors, resulting in a repeated pattern of regularly-spaced R8 cells that gives rise to the

crystalline lattice structure of the adult eye [31]. The process dynamically transforms a

disordered collection of cells into an ordered template for subsequent stages of patterning. In

other words, it refines the spatial resolution of the developing eye field.

Figure 1.1. Retinal patterning in Drosophila. (A) Differentiation is initiated in the developing
eye by the MF, which moves across the eye epithelium from posterior to anterior (white arrow).
On the furrow’s posterior side, G1-arrested progenitor cells differentiate (light blue). Formation
of regularly spaced R8 photoreceptors (red dots) precedes recruitment of additional R cell types
(yellow dots). On the anterior side, progenitor cells are still proliferating (dark blue). Axis refers to
time elapsed since fertilization. Adapted from Peláez et al. (2015). (B) Top, cartoon of an apical
view of the sequential differentiation of eight R cell types from multipotent progenitor cells (grey)
and their relative positions within a single ommatidium. Arrows denote signals transmitted from
the R8 to nearby cells. Bottom, a cross-section view through an eye disc, showing the epithelial
constriction that marks the MF (boxed region) and then the relative nuclear positions of progenitors
(grey) and specified R cells (various colors). Both panels are adapted from Peláez et al. (2015).

Experiments suggest cell decisions to commit to an R8 fate are non-deterministic.

Differentiation is driven by the expression of Atonal, a transcription factor initially induced

in all cells along the leading edge of the furrow [30, 32, 33]. Stochastic differences in cells

reception of signaling cues yields variation in Atonal levels and, consequently, cells propen-

sities to adopt an R8 fate [34, 35]. The eventual R8 cell therefore does not appear to be

predetermined. Equivalent mechanisms have been shown to control many other cell fate

decisions, including sensory bristle specification and the choice between epidermal and neural

fates in the neuro-ectoderm of Drosophila [36, 37].
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These examples expose another important feature of GRNs: their output is non-

deterministic. Dual-reporter experiments in E. coli have elegantly shown that variation may

be attributed to intrinsic noise, attributed to thermal fluctuations at the molecular scale, as

well as extrinsic variation in cell state [38]. The latter may be driven by cell-to-cell differences

in metabolism, gene expression capacity, sensitivity to signaling cues, or any other factors

that exert correlated effects on the expression of one or more genes. Both types of noise

have since been shown to manifest in the population-wide penetrance of complex organismal

phenotypes [39–42]. Some developmental systems appear to leverage noise, using GRNs to

amplify and reinforce stochastic fluctuations in order to limit signal responses to a randomly

chosen subset of cells [34, 36, 37]. Indeed, Pel’aez et al. recently speculated that a similar

mechanism may explain why subsequent R cell fate transitions coincide with rapid increases

in transcription factor expression heterogeneity [43].

These experiments and others like them form our contemporary systems-level view

of development, in which complex networks of regulatory interactions guide cells toward the

appropriate fates by refining their stochastic behavior over time. However, it is unknown

precisely how cell fates are resolved from the dynamic activities of GRNs. It is also unclear

how cells integrate stochastic inputs to execute reliable cell fate decisions. These ambiguities

persist despite the wealth of experimental data generated throughout the past century. New

approaches are therefore needed to unravel the complexities of GRNs and their execution of

cell fate decisions.

1.2. The power of quantitative analysis

Experimental perturbations continue to supply some of the most potent tools in the

arsenal available to researchers, but it has become clear that quantitative and systematic

analysis frameworks are needed to tease apart the complex interactions that govern cell fate
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decisions [44, 45]. Moreover, attempts to either rectify faulty decision mechanisms or engineer

new ones, such as for cancer treatment or the generation of induced pluripotent stem cells,

demand predictive models backed by quantitative data [4].

The focus has therefore gradually shifted from break something and see what happens

to break something and measure what happens. The transition is supported by simultaneous

advances in the resolution with which we can quantify GRN activity during development.

Early approaches assayed the aggregate transcript or protein content of entire tissues. Strate-

gies have since diverged in three separate directions, each of which sharpens the focus to

single-cell resolution while prioritizing a different dimension of measurement. First, high-

throughput transcriptomics strategies emphasize the breadth of genes surveyed. Second, flow

cytometric approaches stress measurement precision. In both cases, cells identities may be

crudely inferred from lineage-specific barcodes or biomarkers [46], but the precise spatial

identify of each cell is discarded. In contrast, methods based on quantitative microscopy

prioritize spatial resolution because cells are measured in their native context. These tech-

niques generally entail imaging gene-specific fluorescent reporters before using software to

detect individual cells and quantify their fluorescence levels. They are particularly well-

suited to probing the intricacies of GRNs subject to signaling from adjacent cells, and have

consequently become a preferred option for studying tissue-scale patterning. In terms of

microscopy, the state of the art has steadily progressed from static ex vivo imaging of fixed

tissues to in situ recording of single-cell expression dynamics [47]. Computational methods

to support quantitative image analysis have enjoyed similar progress [48]. Combined, these

advances allow researchers to collect the data needed to conduct rigorous analyses and make

testable predictions [49]. That is, they promote quantification.

Quantification has completely redefined the precision of GRN analysis. The enhanced

resolution has inspired exciting new research into the specific mechanisms of information
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transmission and processing that underlie cell fate decisions in a broad variety of model

systems [43, 50–52]. These pursuits have also emboldened researchers to pause and reconsider

canonical wisdom. Petkova et al. recently combined quantitative dynamic measurements

and information theory to show that gap gene expression provides sufficient spatial context

to uniquely define the positions of all cells [52]. The authors argued that downstream GRNs

likely decode these signals with near-optimal efficiency, implying that many cell fates could,

at least in principle, be determined during the earliest stages of Drosophila embryogenesis.

The findings imply that the resolution of positional information does not necessarily need

to be refined as development proceeds. Similarly, cell fates need not be spatially resolved

over time, prompting closer scrutiny of the extent to which cell fate decisions during later

stages of development are truly non-deterministic. In causing the field to revisit these tenets

of established dogma, the study exemplifies the power of quantification to produce novel

insight.

Despite its revelatory potential, biologists have not universally embraced quantifica-

tion, instead continuing to rely on visual analysis of imaging data. Resistance may partially

come down to the scarcity of computational proficiency in experimental labs. Collaborations

help alleviate this bottleneck, but they are often plagued by long turnaround times as re-

searchers attempt to juggle many unrelated commitments. User-friendly analysis software

would benefit experimentalists caught in this predicament by eliminating the need for com-

putational proficiency altogether. Automated analysis frameworks have already played a

similar role in many other subdisciplines of biology [53–65]. Indeed, without the support of

automated alignment software, next-generation sequencing would be inaccessible to all but a

few labs with extensive programming and statistical modeling experience. Similar platforms

are available to support quantification of microscopy data [48, 66], but comparatively few

are tailored to address the intricacies of specific model systems and experimental pipelines



20

[67]. Further development of context-specific quantification platforms is therefore needed in

order to lower the barrier to adoption of data-driven analysis.

1.3. Mathematical modeling of cell fate decisions

Mathematical models have reinvigorated the study of cell fate decisions in a broad

variety of contexts. Most modeling efforts fall into one of two categories; those that use a

data-driven approach to recapitulate molecular mechanism, and those that provide a sparse

representation of systems-level behavior.

The first class of models strive to parameterize specific biomolecular interactions by

fitting a model directly to data. They typically describe the time-evolution of transcripts

and proteins using systems of coupled ordinary differential equations (ODEs) reminiscent of

those familiar to chemical engineers and ecologists. Despite the illusion of mechanistic detail,

these models still deploy a healthy dose of abstraction. None of the commonly used rate

represent true elementary reactions, instead opting for empirical representations such as linear

degradation and cooperative binding kinetics. Nevertheless, many novel GRN behaviors and

functions have been elegantly proposed and tested in this manner [40, 68, 69].

The second class of models forego molecular detail in favor of a coarse-grained repre-

sentation of a particular phenomenon. These approaches provide a powerful means to identify,

characterize, and predict behaviors that span a broad variety of model systems and devel-

opmental contexts. Among the common modeling frameworks, control theory has proven

particularly fertile for generating and testing hypotheses related to GRN dynamics. Bacterial

chemotaxis offers a compelling example in which molecular models were supplanted by a

simple integral control framework [68, 70–72]. Analogous strategies have drawn inspiration

from several disciplines to discover numerous novel functions of GRNs [42, 73–77].
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Coarse-grained models are particularly well suites to studying how cell fates are

resolved from spatiotemporal signaling cues. These problems would otherwise be intractable

due to the many complex transport processes that shuttle signaling molecules between

neighboring cells. Lubensky et al. developed a relatively simple reaction-diffusion approach

to model pattern formation in the larval eye. They showed that inductive signaling cues could

drive cell-autonomous positive feedback to account for the emergence of a hexagonal lattice

of R8 cells, as well as an otherwise inexplicable striped pattern observed in some mutants

[78]. Gavish et al. used an even simpler model to show that an additional inhibitory signal is

required to stabilize retinal patterning against minor fluctuations in cells spatial arrangement.

The authors then used an experimental technique known as quantitative mosaic analysis to

identify the unknown diffusible inhibitor [35].

Mathematical models have also shone light on the regulatory interactions that im-

plement cell fate decisions within individual cells. One study explored how cells generate

all-or-none responses to morphogen gradients in the Drosophila ventral ectoderm [79]. An

ultrasensitive response mechanism was proposed to dictate the expression of Yan, a tran-

scriptional repressor known to impede cell fate transitions [80–82]. A later study proposed

that Yan plays a different role in the larval eye, instead forming a bi-stable switch through

reciprocal antagonism with a transcriptional activator named Pointed (Pnt) [83]. The authors

used a psuedo-molecular model to demonstrate that the decision to adopt an R cell fate could

be triggered by an irreversible transition between two stable states; one characterized by

high Yan and low Pnt expression, and the other by low Yan and high Pnt expression (Fig.

1.2). Both transcription factors are known to be subject to several seemingly redundant

sources of negative feedback. The model rationalized the purpose of these inhibitors by

postulating that they enforce bi-stability of the two distinct states. Transitions between the

states are triggered by an increase in Pnt levels. Shwartz et al. extended the model to include
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autoregulatory interactions that help flip the switch by converting transient inductive signals

into sustained Pnt expression [84].

Figure 1.2. The bi-stable switch model of cell fate transitions. The model posits that cell
fate transitions from a multipotent state (grey region) to a differentiating state (red region) are
driven by changes in Pnt (green) and Yan (magenta) expression. The two states are defined by
mutually exclusive expression of the two transcription factors, with steady-state expression dynamics
before and after the transition.

Soon thereafter, the advent of a Pnt-specific fluorescenct reporter curiously revealed

that Yan and Pnt are co-expressed in several developmental contexts [85]. Peláez et al.

then published quantitative measurements indicating Yan exhibits mono-stable expression

dynamics in the larval eye [43]. These two studies fundamentally contradict the existing

model, prompting renewed interest in both Yan and Pnt. Namely, how do they cooperate

to mediate cell fate decisions? How do they do so reliably? And why are they subject to so

much negative feedback?

1.4. Roles for negative feedback in GRNs

Theory supports many potential uses for negative feedback in developmental GRNs

[86]. Perhaps the most obvious application is the maintenance of cell states — that is,

rejecting exogenous disturbances and driving cells toward a desired set point [71, 87, 88].

Negative feedback has also been shown to improve information transmission by linearizing

input-output relationships and expanding dynamic range in several developmental signaling

cascades [40, 69, 89–91]. Yi et al. used a FRET-based reporter of the Gα-subunit to
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demonstrate dose-response alignment of G-protein signaling activity at the highest level of

the yeast mating response pathway [91]. Yu et al. later quantified pFus3 activity to show

that negative feedback further increases signal fidelity throughout much of the downstream

pathway [69]. These functions mimic critical roles for negative feedback in human-engineered

systems [92].

Negative feedback is also vital to the reliable execution of cell fate decisions. Rahimi

et al. showed that Wnt-mediated negative feedback enhances the precision of morphogen

gradients in the ventral domain of the Drosophila embryo [74]. Paulsen et al. showed that

the fidelity of BMP4 signaling in the Xenopus embryo is improved by concomitant expression

of a repressor that suppresses transduction of extrinsic noise. Eliminating the repressor leads

to increased variation of pathway outputs, as well as the cell fate decisions they control

[40]. These studies provide direct experimental evidence that negative feedback can suppress

phenotypic variation.

Experiments in Drosophila indicate that short non-coding transcripts, called microR-

NAs, confer a similar function by buffering developmental processes against both environ-

mental and genetic variability [93–96]. Li et al. studied the effect of perturbing miR-7

activity during sensory organ development, and found that the microRNA stabilizes both

gene expression and fate commitment decisions against fluctuating environmental conditions

[95]. Cassidy et al. used directional selection to quantify the heritability of bristle formation

defects in miR-9a mutants, revealing that microRNAs can also suppress the influence of

intrinsic genetic variation [94]. The same group later showed that miR-9 suppresses the

penetrance of genetic variants deleterious to viability at elevated temperatures [93]. Negative

feedback mediated by microRNAs has therefore been shown to directly affect the evolutionary

fitness of adult organisms by promoting robustness against varying environmental conditions.

Precisely how this effect is achieved remains unknown.



24

1.5. Evolutionary drivers of robust cell fate decisions

Studies of developmental robustness are often traced back to C.H. Waddingtons claim

that there is scarcely a mutant that is comparable in constancy with the wild type [97].

His comment reflects the consistency of adult phenotypes amidst modest levels of genetic

and environmental variation, which gives way to variation when severe perturbations are

introduced [98–101]. Robustness has since been attributed to individual genes and their

products [102–104], as well as the systems-level architectures that they comprise [40, 93–

95, 104–106]. A handful of conserved regulatory motifs, and the strategies they implement,

are now understood to pervade most developmental processes [86, 87, 107, 108]. Robustness

has thus come to be accepted as a fundamental organizational principle underlying the

evolution of all biological systems [109, 110]. That is, selection for genotypes that confer

robustness is widely assumed to shape the evolution of gene regulatory network topologies.

The specific evolutionary drivers for increased robustness of GRNs remain unclear

[111]. Citing phenomenological examples, Waddington attributed robustness to evolutionary

selection for optimal traits. More recently, Siegal et al. argued that developmental robustness

can arise without stabilizing selection for any particular phenotype [112]. They used a gene

interaction network model to demonstrate that robustness is an emergent property of complex

networks subject only to selection on the basis of their own functional stability. The same

authors used in silico evolution to show that most genes in developmental networks buffer

phenotypic variation, indicating that robustness may be an emergent byproduct of GRN

architecture [113]. Computational studies have also questioned the notion that global GRN

properties are a consequence of adaptive evolution, instead suggesting that local properties of

genetic circuits could drive the emergence of macroscopic features, such as those that ensure

robust development [114, 115].
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When a gene or its products are absent or fail to perform their functions, the simplest

contingency is to have others ready to compensate. It consequently seems intuitive that cells

could incorporate functional redundancy to guarantee reliable cell fate decisions [107, 116].

One computational study showed that genetic redundancy is particularly evolutionarily stable

in developmental systems. By simulating functionally overlapping pairs of genes, the authors

demonstrated that increasing the probability with which each gene independently fails to

carry out its function places increasing selection pressure upon the pair as a whole [117].

They reasoned that the resultant increase in evolutionary stability explains the prevalence

of redundancy in developmental systems, where failure rates are high and erroneous cell

fate decisions yield deleterious phenotypes. Their suggestion is consistent with extensive

documentation of functional redundancy in developmental systems [109].

Redundancy could arise through gene duplication or convergent evolution. A. Wagner

argued against the former. He analyzed gene sequence and expression data in yeast to

show that the phenotypic severity of loss-of-function mutations does not correlate with the

availability of functionally equivalent genes. He concluded that functional redundancy is

not the primary source of robustness against genetic variation, instead favoring epistatic

interactions between otherwise unrelated gene products [118]. Combined, these studies

suggest the prevalence of functional redundancy in GRNs may be driven by as-of-yet unknown

forces.
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CHAPTER 2

Automated analysis of mosaic eye imaginal discs in Drosophila

A manuscript resembling this chapter was coauthored with Nicolás Peláez, Richard

Carthew, Neda Bagheri, and Lúıs Amaral. The experimental data presented in this chapter

were collected by Nicolás Peláez.

2.1. Background on quantitative mosaic analysis

Quantification will be essential as biologists study increasingly complex facets of or-

ganismal development [45]. Unfortunately, qualitative analysis remains common because

it is often difficult to measure cellular processes in their native context. Modern fluores-

cent probes and microscopy techniques make such measurements possible [119–121], but the

ensuing image analysis demands specialized skills that fall beyond the expertise of most ex-

perimentalists. Automated analysis strategies have addressed similar challenges in cytometry

[53–55], genomics and transcriptomics [56–59], and other subdisciplines of biology [60, 61].

Image analysis has proven particularly amenable to automation, with several computer vision

tools having gained traction among biologists [62–65]. These platforms are popular because

they increase productivity, improve the consistency and sensitivity of measurements, and

obviate the need for specialized computational proficiency [48, 66, 67]. Designing similar tools

to help biologists probe and measure developmental processes in vivo will further transform

studies of embryogenesis and development into quantitative endeavors.

Developmental biologists study how the expression and function of individual genes

coordinate the emergence of adult phenotypes. They often ask how cells respond when
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a specific gene is perturbed during a particular stage of development. Cell response may

be characterized by changes in morphology, or by changes in the expression of other genes

(Fig. 2.1A). Experimental efforts to answer this question were historically stifled by the

difficulty of isolating perturbations to a single developmental context, as the most interesting

perturbation targets often confer pleiotropic function across several stages of development

[122–124].

Mosaic analysis addressed this challenge in Drosophila by limiting perturbations to

a subset of cells within the larval eye [125, 126], a model system with enduring relevance

[17]. The technique yields a heterogeneous tissue comprised of genetically distinct patches

of cells, or clones. Clone formation may be restricted to specific developmental contexts by

using endogenously-activated promoters to drive trans-chromosomal recombination events

[127, 128]. The timing of these events determines the number and size of the resultant

clones [129]. Cells within each clone are genetically identical. Perturbations are applied by

engineering the dosage of a target gene to differ across clones (Fig. 2.1B), resulting in clones

whose cells are either mutant (−/−), heterozygous (+/−), or homozygous (+/+) for the

perturbed gene. Labeling these clones with fluorescent markers enables direct comparison

of cells subject to control or perturbation conditions (Fig. 2.2A). Additional reporters

may be used to monitor differences in gene expression or morphology across clones (Fig.

2.2B). Variants of this strategy led to seminal discoveries in neural patterning [130–132] and

morphogenesis [133, 134], and remain popular today [18, 19, 135].

Quantitative microscopy techniques are well suited to measuring differences in cell

behavior across clones. One reporter (a clonal marker) labels the clones, while others quan-

titatively report properties of their constituent cells, such as the expression level of a gene

product of interest (Fig. 2.2C). The former then defines the stratification under which
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Figure 2.1. Perturbing gene expression via mitotic recombination. Experimental frame-
work using mitotic clones to test whether or not regulatory interactions occur between a perturbation
target and reporter of interest. Blue and green markers represent the respective genes encoding the
perturbation target and the reporter. (A) A perturbation-induced decrease in reporter levels would
confirm that regulation occurs. (B) Mitotic recombination generates clonal subpopulations carrying
zero, one, or two copies of the gene encoding a perturbation target. Black lines depict a genetic
locus. Only genes downstream of the recombination site are subject to recombination. Red markers
represent a gene encoding a clonal marker used to identify the resultant clones. Red shading of
large oval reflects relative clonal marker fluorescence level.

the latter are compared. We call this strategy quantitative mosaic analysis because it re-

places subjective visual comparison with a rigorous statistical alternative. Although many

recent studies have deployed this approach [136–139], qualitative visual comparison remains

pervasive in the literature.

We suspect the adoption of quantitative mosaic analysis is hindered by an overwhelm-

ing demand for specialized computational skills or, in their stead, extensive manual labor.

Researchers must first draw or detect boundaries around individual nuclei in a procedure

commonly known as segmentation (Fig. 2.2D). Averaging the pixel intensities within each

boundary then yields a fluorescence intensity measurement for each reporter in each iden-

tified nucleus (Fig. 2.2E). The measurements should then be corrected to account for any

fluorescence bleedthrough between reporter channels (Fig. 2.2F).Correction often requires

single-reporter calibration experiments to quantify the crosstalk, followed by complex cal-

culations to remedy the data [140, 141]. Researchers must then label, or annotate, each

identified nucleus as mutant, heterozygous, or homozygous for the clonal marker. Annotation

is typically achieved through visual inspection (Fig. 2.2G). Cells carrying zero, one, or two
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copies of the clonal marker should exhibit low, medium, or high average levels of fluores-

cence, respectively. However, both measurement and biological noise introduce the possibility

that some cells measured fluorescence levels may not reliably reflect their genetic identity.

Annotation must therefore also consider the spatial context surrounding each nucleus. For

instance, a nucleus whose neighbors express high levels of the clonal marker is likely to be

homozygous for the clonal marker, even if its individual fluorescence level is comparable to

that of heterozygous cells (Fig. 2.2G, white arrows). With many biological replicates con-

taining thousands of cells each, annotation can quickly become insurmountably tedious. The

corrected and labeled measurements are then curated for statistical comparison by excluding

those on the border of each clone, and limiting their scope to particular regions of the image

field (Fig. 2.2H). Combined, all of these tasks ultimately burden researchers and raise the

barrier for adoption of quantitative analysis strategies.

Automation promises to alleviate this bottleneck, yet the literature bears surprisingly

few computational resources designed to support quantitative mosaic analysis. The Clonal-

Tools plugin for ImageJ deploys an image-based approach to measure macroscopic features of

clone morphology, but is limited to binary classification of mutant versus non-mutant tissue

and offers no functionality for comparing reporter expression across clones [142]. Alterna-

tively, the MosaicSuite plugin for ImageJ deploys an array of image processing, segmentation,

and analysis capabilities to automatically detect spatial interactions between objects found

in separate fluorescence channels [143, 144]. While useful in many other settings, neither of

these tools support automated labeling of individual cells or explicit comparison of clones with

single-cell resolution. Most modern studies employing a quantitative mosaic analysis instead

report using some form of ad hoc semi-automated pipeline built upon ImageJ [136, 138, 139].

We are therefore unaware of any platforms that offer comprehensive support for an automated

quantitative mosaic analysis workflow.
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Figure 2.2. Conventional versus quantitative mosaic analysis. (A,B) Conventional clonal
analysis in the larval fruit fly eye. (A) Clones are identified by visual comparison of clonal marker
fluorescence among nuclei. (B) Regions labeled mutant (−/−) or homozygous (+/+) for the clonal
marker are compared with those labeled heterozygous (+/−) to assess whether reporter expression
differs across clones. Fluorescence bleed-through is arbitrarily diagnosed. (C-H) Quantitative
clonal analysis. Panels depict a magnified view of the region enclosed by red rectangles in panels
A and B. (C) Raw confocal image of the nuclear stain, clonal marker, and reporter of interest.
(D) Segmentation identifies distinct nuclei. (E) Reporter expression is quantified by averaging
the pixel intensities within each segment. Numbers reflect measured values. (F) Measurements
may be corrected to mitigate fluorescence bleedthrough. (G) Individual nuclei are labeled mutant,
heterozygous, or homozygous for the clonal marker. White arrows mark nuclei with ambiguous
fluorescence levels. (H) Reporter levels are compared across clones to determine whether the
perturbation affects reporter expression. Yellow region marks excluded clone borders. Comparison
may exclude clone borders (yellow regions) and focus on a particular region of the image field (black
arrows). In the larval eye, comparison is often limited to a narrow window near the MF (orange
arrow).
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We previously published a framework for automated segmentation of cell nuclei in the

larval eye [43], in addition to a collection of tools for analyzing reporter expression in the

segmented nuclei [137]. Here, we leverage this experience to create an open-source framework

for automated quantitative mosaic analysis of eye imaginal discs. The framework supports

segmentation, bleedthrough correction, and annotation of confocal microscopy data (Fig.

2.2D-H). We demonstrate each of these functions by applying them to real confocal images

of clones in the eye, and find that our automated approach yields results consistent with

manual analysis by a human expert. We then generate and use synthetic data to survey the

performance of our framework across a broad range of biologically plausible conditions.

2.2. Experimental data

We borrowed an experimental control dataset from a separate study of neuronal fate

commitment during retinal patterning that is later discussed in Chapter 3. The data consist

of six eye imaginal discs dissected and fixed during the third larval instar of Drosophila

development. Within each disc, ey>FLP and FRT40A were used to generate mitotic clones.

The chromosome targeted for recombination was marked with a Ubi-mRFPnls transgene

(Fig. 2.3A), enabling automated detection of subpopulations marked by distinct levels of

mRFP fluorescence (Fig. 2.3B). The discs also carried a pnt-GFP transgene located on a

different chromosome that was not subject to mitotic recombination. Discs were dissected,

fixed, and co-stained with a DAPI nuclear marker prior to confocal imaging. Please refer to

A.1 for additional details regarding genetics and experimental conditions.

As shown in Chapter 3, the PntGFP reporter is predominantly expressed in two

narrow stripes of progenitor cells during eye development. The first stripe occurs immediately

posterior to a wave of developmental signaling that traverses the eye disc. Progenitor cells

located in this region are suitable for comparison because they are of approximately equivalent
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developmental age. We applied our automated analysis framework to a total of nine images

of these cells.

Figure 2.3. Example clones in the larval fly eye. (A) Genetic schema for a bleedthrough
control experiment. Red and green ovals represent genes encoding a RFP-tagged clonal marker and
a GFP-tagged control reporter, respectively. Black lines depict a genomic locus. Recombination
does not affect gene dosage of the control reporter, so GFP variation across clones is attributed to
fluorescence bleedthrough. (B) Confocal image of an eye imaginal disc. Red, green, and blue reflect
clonal marker, control reporter, and nuclear stain fluorescence, respectively. (C) Segmentation of
the DAPI nuclear stain. White lines show individual segments.

2.3. Image segmentation and quantification of nuclear fluorescence levels

We implemented a segmentation strategy based upon a standard watershed approach

[145]. Briefly, we construct a foreground mask by Otsu thresholding the nuclear stain image

following a series of smoothing and contrast-limited adaptive histogram equalization oper-

ations [145, 146]. We then apply a Euclidean distance transform to the foreground mask,

identify the local maxima, and use them as seeds for watershed segmentation. When applied

to the microscopy data, few visible spots in the nuclear stain were neglected, and the vast

majority of segments outlined individual nuclei (Fig. 2.3C).

This approach is flexible and should perform adequately in many scenarios. However,

we acknowledge that no individual strategy can address all microscopy data because seg-

mentation is strongly context dependent. All subsequent stages of analysis were therefore

designed to be compatible with any data that conform to our standardized file structure.

This modular arrangement grants users the freedom to use one of the many other available
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segmentation platforms [147], including FlyEye Silhouette [43], before applying the remaining

functionalities of our framework. Regardless of how nuclear contours are identified, averaging

the pixel intensities within them yields fluorescence intensity measurements for each reporter

in each identified nucleus. We next sought to ensure that these measurements were suitable

for comparison across clones.

2.4. Bleedthrough correction

Despite efforts to select non-overlapping reporter bandwidths and excite them sequen-

tially, it is not uncommon for reporters excited at one wavelength to emit some fluorescence

in another channel (Fig. 2.2B, yellow lines) [140, 148]. The end result is a positive corre-

lation, or crosstalk, between the measured fluorescence intensities of two or more reporters.

Exogenous correlations are problematic given that the purpose of the experiment is to detect

changes in reporter levels with respect to the clonal marker.

In our microscopy data, individual clones were distinguished by their low, medium, or

high expression levels of an RFP-tagged clonal marker (Fig. 2.4A). These images should not

have shown any detectable difference in GFP levels across clones because all cells carried an

equivalent dosage of the control reporter (Fig. 2.3A). However, the images visibly suffered

from bleedthrough between the RFP and GFP channels (Fig. 2.4A,B). Bleedthrough was

similarly evident when we compared measured GFP levels across labeled clones. Nuclei

labeled mutant, heterozygous, or homozygous for the clonal marker had low, medium, and

high expression levels of the control reporter, respectively (Fig. 2.4C, black boxes). The data

were therefore ripe for systematic correction.

Spectral bleedthrough correction is common practice in other forms of cross-correlation

and co-localization microscopy [140, 148]. These methods typically entail characterizing the

extent of crosstalk between fluorophores globally [149, 150], on a pixel-by-pixel basis [141],
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Figure 2.4. Automated correction of fluorescence bleedthrough in the larval eye. (A)
Low, medium, and high expression levels of the RFP-tagged clonal marker. (B) GFP-tagged control
reporter expression. RFP fluorescence bleedthrough is visually apparent upon comparison with A.
(C) Comparison of control reporter expression between clones. Includes data aggregated across nine
images taken from six separate eye discs. Data were limited to cells within the region of elevated
GFP expression that were of approximately comparable developmental age (see Fig. 2.5E-G).
Measurements are stratified by their assigned labels. Before correction, expression differs between
clones (black boxes, p < 10−5). No difference is detected after correction (red boxes, p > 0.05).

or by experimental calibration [140], then detrending all images or measurements prior to

subsequent analysis. Our framework adopts the global approach, using the background pixels

in each image to infer the extent of fluorescence bleedthrough across spectral channels.

2.4.1. Statistical basis of bleedthrough correction

Specifically, we assume the fluorescence intensity Fij for channel i at pixel j is a superposition

of a background intensity Bij and some function of the expression level Eij that we seek to

compare across cells [151]:

Fij = Bij + f(Eij) (2.1)

We further assume that the background intensity of a channel includes linear contributions

from the fluorescence intensity of each of the other channels:

Bij =
∑
k 6=i

αkFkj + β (2.2)
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where k is indexed over K anticipated sources of bleedthrough. Given estimates for each

{α1, α2, . . . αK} and β we can then estimate the background intensity of each measurement:

〈 Bij 〉 =
∑
k 6=i

αk〈Fkj〉+ β (2.3)

where the braces denote the average across all pixels within a single nucleus. The cor-

rected signal value is obtained by subtracting the background intensity from the measured

fluorescence level:

〈 f(Eij) 〉 = 〈 Fij 〉 − 〈 Bij 〉 (2.4)

Repeating this procedure for each nucleus facilitates comparison of relative expres-

sion levels across nuclei in the absence of bleedthrough effects. Bleedthrough correction

performance is therefore strongly dependent upon accurate estimation of the bleedthrough

contribution strengths, {α1, α2, . . . αK}.

2.4.2. Characterization of fluorescence bleedthrough coefficients

We estimate these parameters by characterizing their impact on background pixels. For each

image, we morphologically dilate the foreground until no features remain visible (Fig. 2.5A).

We then extract the background pixels and resample them such that the distribution of pixel

intensities is approximately uniform (Fig. 2.5B). Resampling helps mitigate the skewed

distribution of pixel intensities found in the background. We then estimate values for each

{α1, α2, . . . αK} and β by fitting a generalized linear model to the fluorescence intensities of

the resampled pixels (Fig. 2.5C). Each model is a variant of Equation 2.3 in which angled

braces instead denote averages across all background pixels. We formulate these models with

identity link functions under the assumption that residuals are gamma distributed. Their

coefficients provide an estimate of the bleedthrough contribution strengths that may then be
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used to estimate the background fluorescence intensity of each nucleus in the corresponding

image (Fig. 2.5D). The measurements may then be corrected through application of Equation

2.4.

We applied this procedure to the microscopy data, then compared measured control

reporter expression across labeled clones. To mitigate edge effects, cells residing on the

periphery of each clone were excluded from all comparisons (Fig. 2.5E). Border cells were

identified by using a Delaunay triangulation to find all cells connected to a neighbor within

a different clone. Our framework includes a simple graphical user interface that permits

manual curation of which regions of the image field are included in subsequent analyses. We

used this tool to limit our analysis to the region of elevated GFP expression near the morpho-

genetic furrow (Fig. 2.5F). Comparisons were further restricted to cells undergoing similar

stages of development (Fig. 2.5G). These restrictions served to buffer against differences

in developmental context and ensured that all compared cells were of similar developmental

age. The remaining fluorescence measurements were then aggregated across all eye discs

and compared between pairs of clones, confirming that bleedthrough correction successfully

eliminated any detectable difference in GFP expression (Fig. 2.4C, red boxes, p > 0.05

two-sided Mann-Whitney U test).

2.5. Automated annotation of clones

Our annotation strategy seeks to label each identified cell as mutant, heterozygous, or

homozygous for the clonal marker. Variation within each clone precludes accurate classifica-

tion of a cell’s genotype solely on the basis of its individual expression level. However, clonal

lineages are unlikely to exist in isolation because recombination events are typically timed

to generate large clones. Our strategy therefore integrates both clonal marker expression

and spatial context to identify clusters of cells with locally homogeneous expression behavior,
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Figure 2.5. Using background pixels to characterize bleedthrough contributions in the
foreground. (A) Extraction of background pixels (striped region). Foreground includes the merged
RFP and GFP images, surrounded by a white line. White arrow marks the morphogenetic fur-
row (MF). (B) Background pixel values are resampled such that RFP intensities are uniformly
distributed. (C) A generalized linear model characterizes the contribution of RFP bleedthrough
to GFP fluorescence. Boxes reflect windowed distributions of resampled background pixel inten-
sities. Red line shows the model fit. (D) Measured GFP levels before bleedthrough correction.
Markers represent individual nuclei. Red line shows the inferred contributions of RFP fluorescence
bleedthrough. Dashed portion is extrapolated. (E-G) Data curation prior to statistical comparison
of GFP levels. (E) Cells on the periphery of each clone are excluded. (F) The selection is limited
to the region of elevated GFP expression near the MF. (G) It is further limited to cells of the same
developmental age, defined by their relative positions along the x-axis.

then maps each cluster to one of the possible labels. This unsupervised approach lends itself

to automated annotation because the clusters are inferred directly from the data without

any guidance from the user.
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2.5.1. Qualitative overview of clone annotation algorithm

We first train a statistical model to estimate the probability that a given measurement came

from a cell carrying zero, one, or two copies of the clonal marker (Fig. 2.6A). This entails

fitting a weighted mixture of three or more bivariate lognormal distributions (components) to

a two dimensional set of observations (Fig. 2.6B,C). The first dimension corresponds to the

clonal marker fluorescence level measured within each cell. The second dimension describes

the local average expression level within the region surrounding each cell. We evaluate the

latter by estimating a neighborhood radius from the decay of the radial correlation of the

expression levels, then averaging the expression levels of all cells within that radius (Fig.

2.6D). The second dimension therefore measures the spatial context in which a cell resides.

We balance model fidelity against overfitting by using the Bayesian information criterion

to determine the optimal number of model components (Fig. 2.6E). We then cluster the

components into three groups on the basis of their mean values (Fig. 2.6F), effectively

mapping each component to one of the three possible gene dosages. The model may be

trained using observations derived from a single image, or with a collection of observations

derived from multiple images. Once trained, the model is able to predict the conditional

probability that an individual observation belongs to one of the model’s components, given

its measured expression level.

We then use the learned conditional probabilities to detect entire clones, thus assigning

a label to each cell. Rather than using the trained model to classify each observation, we

compile a new set of observations by limiting each estimate of spatial context to spatially

collocated communities with similar expression behavior (Fig. 2.7A). We identify these

communities by applying a community detection algorithm to an undirected graph connecting

adjacent cells (Fig. 2.7B). Edges in this graph are weighted by the similarity of clonal marker

expression between neighbors, resulting in communities with similar expression levels (Fig.
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Figure 2.6. Training a clone annotation model. (A) One or more images are segmented,
yielding a set of fluorescence measurements X. These are used to sample the spatial context Y
of the neighborhood surrounding each cell. Both sets of values are used to train a mixture model.
Subsequent panels demonstrate these procedures using the example shown in Figure 2.6C. (B)
Expression levels are jointly distributed with the local average among neighboring cells. Center
panel shows the joint distribution. Top and right bar plots show marginal distributions. (C)
Mixture model identifies seven distinct components ki. Center panel shows position and spread
of each component. Top and right panels show marginal components scaled by their respective
weights. Red shading denotes the label mi assigned to each component. The model predicts the
posterior probabilities that a given sample (X,Y ) belongs to each component. (D) Neighborhood
size is estimated by computing the decay constant of the spatial correlation function, ψ(δ). Black
line shows the moving average of ψ(δ), red line shows an exponential fit. Inset shows the resultant
sampling region. (E) The optimal number of mixture components is determined by minimizing BIC
score. (F) Mixture components are labeled by k-means clustering their mean values. Markers reflect
the component means, colors denote the assigned label.

2.7E, Steps I and II). The graph-based approach increases spatial resolution by limiting the

information shared by dissimilar neighbors. Applying the mixture model yields an initial

estimate of the probability that an observation belongs to one of the model’s components (Fig.

2.7E, Step III). We further refine these estimates by allowing the probabilities estimated for

each cell to diffuse throughout the graph (Fig. 2.7E, Step IV). The rate of diffusion between

neighbors is determined by the weight of the edge that connects them, with more similar

neighbors exerting stronger influence on each other. We then use the diffused probabilities

to identify the most probable source component and label each observation (Fig. 2.7E, Step

V). These probabilities also provide a measure of confidence in the assigned labels. We
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replace any low-confidence labels with alternate labels assigned using a marginal classifier

that neglects spatial context (Fig. 2.7F,G), resulting in a fully labeled image (Fig. 2.7H).

The algorithm leverages the collective wisdom of neighboring measurements to override

spatially isolated fluctuations in clonal marker expression, and thereby enforces consistent

annotation within contiguous regions of the image field. The size of these regions depends

upon the granularity of estimates for the spatial context surrounding each cell. We used an

unsupervised approach to choose an appropriate spatial resolution in a principled manner. In

short, the resolution is matched to the approximate length scale over which expression levels

remain correlated among cells. Both the training and application stages of our annotation

algorithm use this automated approach (Figs. 2.6D and 2.7D), thus averting any need for

user input.

2.5.2. Statistical basis of clone annotation

We assume the measured fluorescence level xi for cell i is sampled from an underlying

distribution pm(x) for cells carrying m copies of the gene encoding the clonal marker:

xi ∼ pm(x) (2.5)

We further assume that pm(x) is comprised of a mixture of one or more lognormal distributions:

pm(ln x) =
N∑
n=1

λnN (ln x|θn) (2.6)

N∑
n=1

λn = 1 (2.7)

where 0 ≤ λ ≤ 1 are the mixing proportions, θn = (µn, σ
2
n) are the mean and variance of the

nth distribution. This assumption is supported by both empirical observations and theoretical
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Figure 2.7. Label assignment using a trained clone annotation model. (A) Measurements
are used to sample spatial contexts before the trained model is applied (blue and green path). In
parallel, measurements are labeled using a marginal projection of the trained model (magenta path).
The labels are then merged (red path). (B-D) Spatial context sampling. (B) Weighted undirected
graph connecting adjacent cells. Line width reflects expression similarity between neighbors. (C)
Community resolution is defined by aggregating clusters that fall below a hierarchical cut level δ.
Panels show increasing levels of aggregation. Colors denote distinct communities. (D) Cut level is
chosen by finding the maximum level (red dot) that remains lower than the decay constant of the
spatial correlation function, ψ(δ) (black line). Panel E depicts aggregation below the third level
for ease of visualization. (E) Application of the mixture model. (I) The graph contains distinct
communities of locally similar expression. (II) Mean expression level within each community serves
as the local average for each cell. (III) Mixture model estimates the probability that each cell belongs
to each of its component. Bar plots within each cell illustrate the cumulative probability of each
label. (IV) Posterior probabilities are diffused across the graph. (V) Each cell is assigned the most
probable label. (F,G) Application of a marginal mixture model. (F) Marginal mixture components,
shaded by their mapped labels. Dashed line is the overall marginal density. (G) Marginal classifier
labels cells strictly on the basis of their individual fluorescence level. Red shading denotes the most
probable label for each level. (H) Annotated measurements. Red shading denotes the assigned label.

Labels with low confidence P̂ (mi) < 0.8 are replaced by their marginal counterparts.
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insights [152, 153]. By superposition, the global distribution of measured fluorescence levels

p(lnx) for all values of m are also sampled from a mixture of K components:

p(ln x) =
2∑

m=0

αmpm(ln x) =
2∑

m=0

αm

N∑
n=1

λnN (ln x|θn) =
K∑
k=1

λkN (ln x|θk) (2.8)

K∑
k=1

λk = 1 (2.9)

where αm denotes the overall fraction of cells with m copies of the gene encoding the clonal

marker. For brevity, we substitute X = lnx yielding:

p(X) =
K∑
k=1

λkN (X|θk) (2.10)

Given a collection of sampled fluorescence levels, {Xi}i=1...N , we use expectation

maximization to find values of θk and λk for each of the model’s K components that maximize

the log-likelihood of the observed sample. We repeat this procedure for a range of sequential

values of K, resulting in multiple models of increasing size. We then balance model resolution

against overfitting by selecting the model that yields the smallest value of the Bayesian

Information Criterion (BIC):

BIC(K) = ln(N)qK − 2ln(L̂K) (2.11)

qK = K − 1 + 2K (2.12)

where N is the sample size, ln(L̂)K is the maximum value of the log-likelihood, the subscript

K denotes the number of mixture components in the model, and qK is the total number of

parameters (i.e. K − 1 values of λk and 2K values of µk and σ2
k).
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Applying Bayes’ rule to the selected model infers the posterior probabilities that each

sample Xi belongs to the kth component:

p(k|Xi) =
p(Xi|k)p(k)

p(Xi)
=
p(Xi|k)λk
p(Xi)

(2.13)

where p(Xi | k) is evaluated using the model’s likelihood function and p(Xi) is evaluated

by marginalizing across each of the model’s K components. The end result is a mixture

model that allows us to predict the probability that a given measurement of clonal marker

expression belongs to a particular one of its component distributions.

We then define a many-to-one mapping, f , from each of the K components of the

mixture to each of the three possible values of m:

f : {0, 1, ...K} → {0, 1, 2} (2.14)

We determine the mapping by k-means clustering the K component distributions into three

groups on the basis of their mean values, eµk . We may then assign a genotype label m to each

measurement Xi by predicting the component k from which it was sampled. The accuracy of

these labels depends upon how closely the fitted mixture model reflects the true partitioning

of gene copies among clones. While finite mixtures are always identifiable given a sufficiently

large sample [154], the algorithm used to fit the mixture tends toward local maxima of the

likelihood function when the true components are similar (Wu, 1983). An approach based

on a univariate mixture is thus inherently prone to failure when expression levels extensively

overlap across clones, as variation within each clone precludes accurate classification of a

cell’s genotype solely on the basis of its individual expression level. However, clonal lineages

are unlikely to exist in isolation because recombination events are usually timed to generate

large clones. Our strategy therefore integrates both clonal marker expression and spatial

context to identify clusters of cells with locally homogeneous expression behavior.
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We incorporate spatial context by introducing a second jointly-distributed variable

Yi:

Yi =
1

Mi

Mi∑
j=0

Xj (2.15)

where the subscript j indexes all Mi neighbors of cell i. The new variable reflects the average

expression level among the neighbors surrounding each cell. We define neighbors as pairs

of cells located within a critical distance of each other. This distance, or sampling radius,

is derived from the approximate length scale over which cells retain approximately similar

clonal marker expression levels. Specifically, we determine the exponential decay constant of

the spatial correlation function, ψ(δ):

ψ(δ) =
< (Xi − µX)(Xj − µX) >i,j∈δ

σ2
X

(2.16)

where µX and σ2
X are the global mean and standard deviation, and angled brackets denote

the mean across all pairs of cells separated by distance δ. We efficiently implement this

procedure by fitting an exponential decay function to the down-sampled moving average of

ψ(δ) as a function of increasing separation distance.

Following the introduction of spatial context, the mixture model becomes:

p(X, Y ) =
K∑
k=1

λkN (X, Y |θk) (2.17)

where θk = (~µk, ~σ
2
k) contains the mean and variance of each component given by vectors of

length two. This formulation constrains each component’s covariance matrix to be diagonal.

The posterior is now:

p(k|Xi, Yi) =
p(Xi, Yi|k)λk
p(Xi, Yi)

(2.18)
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We can recover the univariate model by marginalizing the posterior over all values of Y :

p(k|Xi) =
∑
j

p(k|Xi, Yj) (2.19)

When neglecting spatial context, we use this expression to classify each sample by applying

the mapping f to the value of k that maximizes p(k | Xi):

f(argmax
k

p(k|Xi)) (2.20)

In all other cases, we deploy a graph-based approach to refine the estimate of p(k |

Xi, Yi). This first entails constructing an undirected graph connecting adjacent cells within

each image. We obtain the graph’s edges through Delaunay triangulation of the measured

cell positions, then exclude distant neighbors by thresholding the edge lengths. Each edge is

assigned a weight wij reflecting the similarity of clonal marker expression between adjacent

cells i and j:

wij = exp
(−Eij
〈E〉

)
(2.21)

Eij = |Xi −Xj| (2.22)

where Eij is the absolute log fold-change in measured expression level and angled brackets

denote the mean across all edges. We chose an exponential formulation because it yields an

approximately uniform distribution of edge weights. We then detect communities within the

graph using the Infomap algorithm [155]. The algorithm provides a hierarchical partitioning

of nodes into non-overlapping clusters. We aggregate all clusters below a critical level that

is again chosen by estimating the spatial correlation decay constant. We then enumerate

p(k | Xi, Y
c
i ) where Y c

i is the spatial context obtained by averaging expression levels among

all neighbors in the same community as cell i.
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We further incorporate spatial context by allowing the posterior probabilities p(k |

Xi, Y
c
i ) to diffuse among adjacent cells. We define the modified posterior probability p̂(k |

Xi, Y
c
i ) through a recursive relation analogous to the Katz centrality [156], initialized by

p(k | Xi, Y
c
i ):

p̂(k | Xi, Y
c
i ) = α

∑
j

wij p̂(k | Xi, Y
c
i ) + β (2.23)

β = (1− α)p(k|Xi, Y
c
i ) (2.24)

where α is the attenuation factor and wij are the edge weights. Expressed in matrix form,

the solution for p̂(k | X, Y c) is given by:

p̂(k | X, Y c) = (I − αW )−1(1− α)p(k | X, Y c) (2.25)

where I denotes the identity matrix and W is the matrix of edge weights wij. We then assign

a label to each measurement Xi by applying f to the value of k that maximizes p̂(k | Xi, Y
c
i ):

f(argmax
k

p̂(k|Xi, Y
c
i )) (2.26)

Finally, we assess the total posterior probability of each assigned label, P̂ (mi):

P̂ (mi) =
∑

{k|f(k)=mi}

p̂(k|Xi, Y
c
i ) (2.27)

This measure reflects the overall confidence that mi is the appropriate label. Labels whose

confidence falls below 80% are replaced by their counterparts estimated using the marginal

classifier. This substitution helps preserve classification accuracy in situations where spatial

context is not informative, and is particularly useful when the annotated clones are relatively

small.
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2.6. Manual assessment of annotation performance

We sought to validate the performance of the annotation algorithm by assessing its

ability to accurately label a dataset in which the true labels are known. While it is common

practice to use human-labeled data as the gold standard, manually assigned labels do not

represent a reliable and reproducible ground truth. Furthermore, we contend that validation

with manually-labeled data entrains implicit human biases in the selection of performant

algorithms. These biases are particularly pronounced in biological image data where intrinsic

variation, measurement noise, and transient processes can make cell-type annotation a highly

subjective, and thus irreproducible, task.

Nevertheless, we begrudgingly labeled nuclei in each eye imaginal disc as mutant,

heterozygous, or homozygous for the clonal marker, then automatically labeled the same cells

(Fig. 2.8A). The two sets of labels showed strong overall agreement (Figs. 2.8B and 2.9A).

Excluding cells on the border of each clone revealed greater than 97% agreement in seven of

the nine annotated images (see Table 2.1). Upon secondary inspection of the sole instance

of substantial disagreement (Fig. 2.9B), we are unable to confidently discern which set of

labels are more accurate.

Table 2.1. Agreement between
automated and manual annotation

Disc Layer Overall Excl. border

1 1 93.1% 97.3%
1 2 95.3% 97.3%
2 1 91.3% 99.1%
2 2 95.2% 96.4%
3 1 67.2% 75.6%
4 1 82.5% 89.2%
5 1 96.2% 100%
6 1 99.1% 99.3%
6 2 95.2% 97.5%
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Figure 2.8. Automated unsupervised annotation of clones in the larval eye. (A) Labels
assigned by automated annotation. Yellow, cyan, and magenta denote the label assigned to each
contour. Labels are overlayed on the RFP channel of the image shown in 2.3B. Cells on the periphery
of each clone are excluded. (B) Comparison of automated annotation with manually-assigned labels.
Confusion matrix includes data aggregated across nine images taken from six separate eye discs.
Cells on the periphery of each clone are included. Columns sum to one.

Figure 2.9. Comparison of automated annotation with manually assigned labels. (A)
Distribution of labels among each possible value. (B) Visual comparison of the sole instance in
which automated and manual annotation differ. Image shows clonal marker fluorescence, colors
denote the assigned label.

Synthetic benchmarking provides a powerful alternative to validation against manually

labeled data. The idea is simple; measure how accurately an algorithm is able to label

synthetic data for which the labels are known. The synthetic data generation procedure

may be modeled after the process underlying formation of the real data, providing a means

to assess the performance of an algorithm across the range of conditions that it is likely to

encounter. The strategy therefore provides a means to survey the breadth of biologically

plausible conditions under which the algorithm provides adequate performance. Synthetic

benchmarking also facilitates unbiased comparison of competing algorithms, resulting in a

reliable standard that may be called upon at any time. We therefore developed a platform
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to generate synthetic microscopy data that could be used to benchmark the performance of

our annotation algorithm.

2.7. Generation of synthetic microscopy data

Each synthetic dataset depicts a culture of cells distributed roughly uniformly in space.

To generate each culture, we simulated the two dimensional growth of a population seeded

with a single cell. Growth proceeds through sequential division of cells (Fig. 2.10A). Not all

cells divide at each time-step because cell division is a stochastic process. Instead, each cell

divides stochastically with a rate controlled by a global growth rate parameter.

Cells in this culture carry a gene encoding a clonal marker (Fig. 2.10B). During

growth, the gene is subject to mitotic recombination (Fig. 2.10C). Each time a cell divides,

its genes are duplicated and equally partitioned between the two daughter cells. However, in

some instances a heterozygous parent may instead partition its two duplicate genes unequally,

with one daughter receiving both and the other receiving none. These mitotic recombination

events occur stochastically with a frequency defined by a global recombination rate parameter.

After each round of cell division, all cells are repositioned in order to preserve ap-

proximately uniform spatial density (Fig. 2.10C). Repositioning is achieved by equilibrating

a network of springs connecting each cell with its neighbors. This undirected network is

constructed through Delaunay triangulation of all cells spatial positions. Edges on the pe-

riphery of the culture are systematically excluded by establishing a maximum polar angle

between neighbors. This filtration removes spurious edges between distant pairs of cells.

Edges connecting pairs of cells with the same clonal marker dosage are assigned a 10% higher

spring constant than edges that connect dissimilar cells. This modest bias ensures that cells

tend to remain proximal to their clonal lineages. Cell positions are then updated using a



50

force-directed graph drawing algorithm [157]. Alternating cell division and repositioning

steps are then repeated until a predefined population size is reached.

The timing and duration of recombination events affects the number and size of the

resultant clones. In real experiments, recombination events are restricted to a particular stage

of the developmental program through localized exogenous expression of the recombination

machinery. We incorporated this feature into our cell growth simulations via two adjustable

parameters. The first determines the minimum population size at which recombination may

begin, while the second determines the number of generations over which recombination may

continue to occur. These two parameters provide a means to tune the average number and

size of clonal subpopulations in the synthetic data (Fig. 2.10D). Early recombination events

generally entail larger clones, while shorter recombination periods limit the extent of clone

formation (Fig. 2.10E).

Each simulation yields a list of spatial coordinates and gene dosages for each nucleus

(Fig. 2.10B). We generated a synthetic measurement for each nucleus by randomly sampling

its fluorescence level in a dosage-depend manner. Specifically, the measured fluorescence

levels {x1, x2, . . . xi=N} were sampled from a lognormal distribution conditioned upon the

corresponding gene dosage (Fig. 2.11A-C):

ln x ∼ Nn(θn) (2.28)

where the subscript n denotes the gene copy number and θn = (µn, σ
2
α) are the mean and

variance of the corresponding distribution. We define µn such that the mean fluorescence

level doubles for each additional copy of the gene:

µn = ln(2n−1) (2.29)
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Figure 2.10. Simulated growth of a synthetic cell culture. (A) Partial simulation time course.
Each marker depicts a cell. Greyscale intensity reflects clonal marker gene dosage. Simulation time
reflects the approximate number of cell divisions since the initial seed. (B) Simulations yield
gene dosages and spatial coordinates for each cell. (C) Single iteration of an example simulation.
Circles represent individual cells, red shading denotes clonal marker dosage. Cycles of cell division,
recombination, and repositioning are repeated until the simulation reaches a specified end time
(t > 11 in panel A). (D) Cultures simulated with varying recombination start times. All cultures
were subject to four generations of recombination (δt = 4). Recombination start time increases
from left to right. Later recombination events generally yield smaller clones. (E) Mean clone size
(cells per clone) as a function of the recombination start time. Colors denote recombination period
duration. Error bars reflect standard error of the mean across 50 replicates. Clone size generally
decreases as recombination is limited to later times.

We refer to σα as the fluorescence ambiguity because it modulates the similarity of fluorescence

levels across gene dosages. Increasing σα increases the overlap among N0, N1, and N2 (Fig.

2.11D,E), and consequently increases the difficulty of the annotation task (Fig. 2.11F).

2.8. Synthetic benchmarking of annotation performance

We generated a large synthetic dataset spanning a broad range of sixteen different

clone sizes and fluorescence ambiguities (Figs. 2.10D and 2.11F, only half are shown for each).
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Figure 2.11. Tunable generation of synthetic microscopy data. (A) Fluorescence levels are
sampled from lognormal distributions conditioned upon gene dosage. (B) Synthetic data include
a measured fluorescence level for each reporter in each cell. Text color reflects the generative
distribution in A. (C) Synthetic image of clonal marker fluorescence when σα = 0.25. Each nucleus
is shaded in accordance with its sampled fluorescence intensity. (D-F) Left to right, increasing the
fluorescence ambiguity parameter broadens the overlap in fluorescence levels across gene dosages.
(D) Distributions used to generate clonal marker fluorescence levels. Red shading denotes gene
dosage. (E) Evenly weighted sum of the generative distributions. (F) Example images of clonal
marker fluorescence.

We performed 50 replicate simulations for each condition. All simulations were terminated

when the total population exceeded 2048 cells. We assigned each cell a 20% probability

of division upon each iteration, and each cell division event was accompanied by a 20%

chance of mitotic recombination. Parent cells containing zero or two copies of the recombined

genes were ineligible for recombination, effectively sealing the genetic fates of their respective

lineages.
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Figure 2.12. Synthetic benchmarking of automated annotation performance. (A) MAE
and (B) accuracy of the assigned labels. Each pixel reflects the average across 50 replicates. Clone
size reflects the mean number of cells per clone. Accuracy denotes the fraction of cells that were
correctly labeled. Performance improves with increasing clone size and worsens with increasing
fluorescence ambiguity.

We then annotated each set of measurements, and compared the assigned labels with

their true values. The mixture model given by Equation 2.17 was independently trained

and applied to each replicate. Training a single model on all replicates yields modestly

stronger performance on average (not shown), but also yields more variable variable results

across the parameter space because all labels are dependent upon the outcome of a single

expectation maximization routine. We used the mean absolute error (MAE) as a comparison

metric because it provides a stable measure of accuracy for multiclass classification problems

in which the labels are intrinsically ordered [158]. In other words, it penalizes egregious

misclassifications more severely than mild ones.

We observed very strong annotation performance for all cases in which σα ≤ 0.3 (Fig.

2.12A). Unsurprisingly, performance suffers as the difficulty of the classification problem is

increased. As cells on the periphery of each clone were not excluded from these analyses,

the observed metrics provide a lower bound on the performance that may be anticipated in

practice. The same trends are evident when performance is graded strictly on accuracy (Fig.

2.12B).

Performance improved with increasing clone size. We suspected this was caused

by larger clones offering additional spatial context to inform the identify of each cell. We
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verified our assertion by re-evaluating performance relative to a variant of our annotation

algorithm that neglects spatial context (Fig. 2.7G). As expected, the variant’s performance

exhibited no dependence on clone size (Fig. 2.13A). Comparing the two strategies confirmed

that spatial context confers the most benefit when clones are large (Fig. 2.13B). Inclusion

of spatial context also becomes increasingly advantageous as the fluorescence ambiguity is

increased, even for smaller clones. Thus, spatial context adds progressively more value as

the classification task becomes more difficult.

This observation may be rationalized from a statistical perspective. Each cell is

classified by maximizing the probability that the assigned label is correct. We compute these

probabilities using the estimated expression level of each cell. Neglecting spatial context, this

estimate is limited to a single sample and is therefore highly sensitive to both measurement

and biological noise. Incorporating spatial context expands the sample size and thereby

reduces the standard error of the estimated fluorescence level. The strategy is thus generally

well suited to scenarios in which fluorescence intensities correlate across large clones, and

closely parallels computer vision methods that exploit spatial contiguity to segment image

features with ill-defined borders [159]. Because increased measurement precision comes at

the expense of spatial resolution, we expect strong performance when measurements are

aggregated across relatively large clones, but failure to detect small, heterogeneous clones.

These expectations are consistent with the observed results. They are also conveniently

aligned with the anticipated properties of real data, as experiments typically attempt to

mitigate edge effects by driving early recombination events to generate large clones.

2.9. Potential applications and continued development

We used synthetic data to survey the performance of our annotation strategy across

a much broader range of conditions than would have otherwise been possible with manually
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Figure 2.13. Spatial context is most informative for large clones with ambiguous flu-
orescence. (A) MAE of labels assigned using a marginal classifier that neglects spatial context.
Performance worsens with increasing fluorescence ambiguity but does not depend upon clone size.
(B) Annotation performance relative to the marginal classifier. Color scale reflects the log2 fold-
change in MAE when spatial context is neglected. Blue indicates that spatial context improves
performance.

labeled data. This included conditions well beyond those of practical use. In particular,

experiments designed to compare gene expression levels across clones would likely seek to

avoid generating small clones with ambiguous clonal marker expression. Synthetic data

provided a means to survey these edge cases and establish a lower bound on annotation

performance. The strong performance observed across the remaining conditions bolsters our

confidence that our annotation strategy is well suited to the images it is likely to encounter.

In each of our examples, clones were distinguished by ternary segregation of clonal

marker fluorescence levels. Modern mosaic analysis techniques continue to deploy ternary

labeling [160, 161], but also frequently opt for binary labeling of mutant versus non-mutant

clones [162–164] and dichromic labeling of twin-spots [165, 166]. Our annotation scheme

readily adapts to each of these scenarios provided that the number of anticipated labels

is adjusted accordingly. In the case of dichromic labeling, binary classification would be

performed separately for each color channel before merging the assigned labels. Extending

the same logic to combinatorial pairs of colors suggests that our framework may also be

compatible with multicolor labeling schemes used to simultaneously trace many clonal lineages

over time [167–169]. Our framework is thus well suited to many different mosaic analysis

platforms deployed in the larval eye.
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In principle, the framework described here should also be applicable to a wide variety

of other tissues [170, 171] and model organisms [172–174] in which mosaics are studied.

In practice, application to alternate contexts would require modifying some stages of the

analysis. Most notably, image segmentation is strongly context dependent and any attempts

to develop a universally successful strategy are likely to prove futile [175]. For this reason,

we implemented a modular design in which each stage of analysis may be applied separately.

For example, a user could perform their own segmentation before using our bleedthrough

correction and clone annotation tools. By offering modular functionalities we hope to extend

the utility of our software to the wider community of developmental biologists. Furthermore,

the open-source nature of our framework supports continued development of more advanced

features as various demands arise. Our synthetic benchmarking platform could then be used

to objectively confirm the benefit conferred by any future developments.
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CHAPTER 3

Ratiometric control of a transit to differentiation

A manuscript resembling this chapter was coauthored with Jean-Francois Boisclair

Lachance, Nicolás Peláez, Rachael Bakker, Heliodoro Navarro, Lúıs Amaral, Neda Bagheri,

Ilaria Rebay, and Richard Carthew. A preprint is publicly available at https://doi.org/

10.1101/430744. All of the experiments were conceived, designed, and executed by my

colleagues. My contributions include all of the computational analysis and modeling and

figures. I also wrote most of the the text under the guidance of Professor Richard Carthew.

3.1. Background on the coordination of cell fate decisions

Organismal development proceeds through a sequence of transitions that yield in-

creasingly specific cellular states. Developmental programs employ a variety of strategies to

coordinate transitions, ultimately ensuring that cells adopt the correct state in space and

time. Elucidating these decision mechanisms is crucial to understanding the processes that

guide development, as well as the diseases that arise when they fail.

How cells dynamically integrate the activities of one or more transcription factors to

reliably execute state transitions is a long-standing question. Transcription factors initiate

and enforce transitions by differentially regulating the expression of specific target genes

[176–178]. Coordination among transcription factors can thus broaden the spectrum of

possible cell responses to developmental cues [179, 180]. Positive and negative feedback can

create bi-stable patterns of mutually exclusive transcription factor expression or activity that

render state transitions irreversible [79, 181–183]. Cells can also regulate state transitions

https://doi.org/10.1101/430744
https://doi.org/10.1101/430744
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by differentially partitioning transcription factors between daughter cells [51]. In all of

these models, mRNA and protein expression are believed to depend upon the absolute

concentrations of the transcription factors involved [39, 184–186].

Studies of intercellular signaling suggest cells are capable of sensing relative levels

of signaling molecules. For example, the TGF-β pathway elicits a cell response following

changes in input signaling relative to the preceding background [50]. Fold-change, rather

than absolute levels of β-catenin, dictate Wnt signal transduction in eukaryotic cells [187].

Likewise, aggregation of the social amoeba Dyctiostellium depends on fold-change detection

of extracellular cAMP concentrations [188]. Relative measurements can also involve multiple

molecular components. In the BMP pathway, cells interpret multi-ligand inputs based on the

relative levels of each ligand pair, with additive, differential, and ratiometric response types

arising directly from the relative competition between different ligand-receptor pairs [189]. In

yeast, pheromone response is insensitive to the absolute abundance of the Gproteincoupled

receptor Ste2. Instead, cells respond to the fractional occupancy of the signal receptor by

forming a ratiometric sensor between Ste2 and its regulatory inhibitor Sst2 [190]. Topological

features of molecular interaction networks, such as feed-forward loops, can also sense relative

changes in molecule abundance [76, 191]. Combining such circuits with precise coordination

of signaling inputs would yield a molecular decision mechanism that is robust to fluctuations

in the abundance of participating molecules. Notably, while relevant transcription factors are

precisely controlled during development [192, 193], it remains unknown whether cells sense

the relative concentrations or activities of different transcription factors when executing cell

state transitions.

Two ETS-domain transcription factors, the activator Pointed (Pnt) and the repressor

Yan (also known as Anterior open, Aop), are essential regulators of cell fate transitions

at numerous stages of Drosophila development [194–198]. Consistent with their opposing
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regulatory effects, genetic studies have shown that Pnt and Yan can act antagonistically in

guiding numerous cell fate transitions [194, 195, 199, 200]. The pnt locus encodes two protein

isoforms, PntP1 and PntP2, that differ in their N-terminal transactivation domains but share

the same DNA-binding domain (Fig. 3.1A) [201, 202]. Specifically, PntP1 is constitutively

active whereas PntP2 requires phosphorylation via the RTK signaling pathway to become

a potent activator [199, 200]. Because both Pnt isoforms and Yan bind to a common ETS-

binding DNA sequence motif GGA(A/T) [203], competition for occupancy and regulation of

common target genes must be precisely orchestrated [195, 197, 198, 200, 204–207].

Pnt and Yan display mutually exclusive expression patterns in several developing

tissues [85]. The embryonic ventral ectoderm provides a classic example in which cells

unambiguously reside in one of two stable states [79, 194]. These and similar observations

inspired a bistable switch model of cell fate specification in which the multipotent state is

defined by high absolute Yan levels and the differentiated state is defined by high absolute

Pnt levels [83]. The model posits that RTK signaling triggers a transition from target

gene repression to activation by degrading Yan and activating PntP2 [82, 199]. A positive

feedback loop in which transient phosphorylation of PntP2 activates expression of pntP1 is

thought to stabilize the transition by enabling prolonged signaling-independent stimulation

of target genes [84]. Sustained PntP1 expression in cells devoid of Yan thereby recapitulates

a complementary expression pattern under the control of RTK signaling [85]. However, Pnt

and Yan are also co-expressed during cell fate commitment in several developmental contexts

[85]. For example, the two proteins are co-expressed in posterior follicle cells of the early

egg chamber and throughout the embryonic mesoderm [85], where they are required for

specification of cell fates [195, 196]. Co-expression also occurs in the larval eye [85], despite

the repeated use of RTK signaling to designate cell fates [208]. Eye development thus prompts
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exploration of how state transitions are resolved from concurrent Pnt and Yan expression in

response to signaling cues.

Eye development is divided into two distinct phases, growth and differentiation. In

the first phase, multipotent progenitor cells in the eye-field asynchronously proliferate from

the earliest larval stage until the third instar stage of larval life [209]. The differentiation

phase of eye development begins in the early third instar larva, when cells situated at the

posterior margin of the eye disc start to differentiate into photoreceptor (R) cells, followed by

progressively more anterior cells (see Fig. 1.1A). This wave of differentiation is initiated and

coordinated by a morphogenetic furrow (MF), which traverses the eye disc from posterior

to anterior for the remainder of the third instar stage up to the early pupal stage [29].

Progenitor cells located immediately anterior to the MF arrest in G1 of the cell cycle and

express a transcription factor called Atonal. Refinement of Atonal expression within this

field establishes the differentiation program by specifying individual R8-type photoreceptors

in a periodic pattern immediately posterior and parallel to the MF [30, 210]. Each R8 cell

then locally secretes an RTK ligand that induces R8’s multipotent neighbors to differentiate

into other photoreceptor types (see Fig. 1.1B) [29, 208]. Transitions sequentially occur

approximately every two hours to form R2/R5, R3/R4, R1/R6, and R7 photoreceptors

[209]. Many cells remain as multipotent progenitors even after all R cell fates have been

adopted. These cells will adopt other fates at later stages of eye development, with any

surplus eliminated by apoptosis [211].

R cell fate specification violates three central tenets of the bistable switch model. First,

Pnt and Yan do not exhibit a mutually exclusive expression pattern during eye development.

The two proteins are extensively co-expressed in both progenitor and differentiating cells

within and posterior to the MF [85]. Second, transitioning cells do not originate in a stable

high Yan state. We recently quantified Yan protein dynamics during larval and early pupal
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eye development [43]. In progenitor cells, Yan displays pulsatile dynamics in which protein

levels rapidly increase as the MF passes and then gradually decay back to low initial values.

Third, transitioning cells do not adopt a stable high Pnt state. Visual inspection of eye discs

carrying a fluorescent reporter for Pnt expression suggest that Pnt levels decay on a timescale

comparable to Yan in transitioning cells [85]. Despite their similar expression patterns, the

two proteins still exhibit antagonistic effects on R cell fate determination. Pnt stimulates

progenitor cells to transit to an R cell fate while Yan inhibits these transitions [82, 200].

Here, we explore this apparent paradox to understand how two coexpressed transcrip-

tion factors with comparable DNA binding specificity but opposing transcriptional functions

elicit precisely controlled cell state transitions in the developing eye. We find that cell states

are regulated by the relative abundance of these two proteins, rather than by their absolute

concentrations. Progenitor cells dynamically maintain an approximately constant ratio of

Pnt-to-Yan protein despite their absolute concentrations varying over time. Cells that tran-

sition to R cell fates rapidly increase their Pnt-to-Yan ratio, which remains elevated over

time. We show that a ratio control strategy buffers this ratio against variable abundance of

either protein. We also find that the signaling inputs of the Yan-Pnt network regulate the

dynamics of the transcription factor ratio. Although Notch and Ras signals can both pro-

mote and inhibit differentiation in the developing eye [208, 212], we find that Notch signaling

predominantly decreases the Pnt-to-Yan ratio in progenitor cells while Ras signaling mainly

increases the ratio. Notch and Ras signals thus inhibit and promote cell state transitions in

the eye by dynamically tuning the ratio of the two transcription factors. We conclude that

progenitor cells interpret an increase in the abundance of Pnt relative to Yan as a cue to

differentiate.
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3.2. PntGFP expression dynamics in the developing eye

Although Pnt expression has been qualitatively studied in the eye [85], its dynamics

have not been quantified. Therefore, we took advantage of a fully functional genomic transgene

in which both pntP1 and pntP2 are C-terminally tagged with GFP (Fig. 3.1A). As previously

reported [85], pnt-gfp rescues pnt null mutants to viable, fertile adults with wild type external

morphology (Fig. 3.1B,C). Qualitative examination of Pnt-GFP expression in 100h eye-

antennal imaginal discs revealed a region of very low expression in cells anterior to the MF,

followed by strong expression in two parallel stripes of cells immediately posterior to the MF

(Fig. 3.2A, regions 1 and 2).

Figure 3.1. Pnt-GFP transgene rescues pnt null mutants. (A) Diagram of the pnt locus
encoding the Pnt-P1 and Pnt-P2 protein isoforms. The isoforms share an ETS DNA-binding domain
(red) but are distinguished by the presence of a SAM domain (blue) within Pnt-P2. Green arrows
at the C-termini depict insertion sites of GFP in the pnt-gfp allele, black arrows at the N-termini
depict insertion sites of the pntHS20 and pnt1277 enhancer-trap alleles. Adapted from Shwartz et al.
(2013). (B,C) Adult eyes of flies carrying (B) one or (C) two copies of the recombineered pnt-gfp
transgene under a pnt null mutant background. Note the wildtype retina patterning under both
rescue conditions.

3.3. The Pnt-to-Yan ratio varies between cells in different states

We used Histone-RFP fluorescence from a His2Av-mRFP transgene to label all eye cell

nuclei for automated segmentation following direct fluorescence microscopy of fixed specimens

[43, 213]. Average Pnt-GFP fluorescence levels and exact 3D positions were then calculated

for all nuclei in each developing eye disc. Pnt-GFP fluorescence levels were normalized to
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Figure 3.2. Pnt and Yan expression dynamics during eye development. (A) Maximum
intensity projection of Pnt-GFP fluorescence in an imaginal disc fixed ∼ 100 h after fertilization.
Right panel corresponds to the region enclosed by dashed white lines in the left panel. Morphogenetic
furrow (orange arrow) precedes the first and second stripes of strong Pnt-GFP expression (black
lines, labeled 1 and 2). (B) Pnt-GFP expression in progenitor cells. Grey points are individual cells,
solid line is the smoothed moving average. Orange shading indicates the first and second stripes of
Pnt-GFP expression. (C, D) R cell recruitment from the (C) first and (D) second pulses of Pnt-
GFP expression. Solid lines and shaded regions denote moving averages and their 95% confidence
intervals. (E, F) Confocal images of (E) Pnt-P1 and (F) Pnt-P2 enhancer-trap co-expression with
Pnt-GFP. Orientation is consistent with panel A. MF (orange arrow) precedes first and second
stripes of Pnt-GFP induction (black lines, labeled 1 and 2). In merged images, Pnt-GFP is green and
enhancer-trap expression is magenta. (G, H) Measured (G) Yan expression and (H) log2-transformed
Pnt-GFP to Yan ratios in progenitor cells. Grey points are individual cells, solid line is a smoothed
moving average.
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Histone-RFP, which provided some control over measurement noise and nuclear constriction

that occurs at the MF [43, 213]. We mapped each cell’s position along the anterior-posterior

coordinate of the eye disc to a point in developmental time. This linear approximation is

sufficiently accurate because the MF moves across the eye field with approximately constant

velocity, forming one column of R8 cells every two hours [214, 215]. The distance between

a cell and the MF is therefore proportional to the time elapsed since the MF passed. We

also manually assigned a state value to each cell. Cell state classification is possible because

nuclei can be unambiguously identified without cell-specific markers by their morphology,

apical-basal position, and relative distance to the furrow [27, 28, 43, 209, 213, 216]. Combined,

these data allowed us to infer a macroscopic view of cell state transition dynamics from the

spatial arrangement of cells relative to each other and the MF. Although our approach cannot

measure the developmental progression of an individual cell, it provides a dynamic view of

thousands of cells across a developing eye. From this information, average cell behaviors can

be reconstructed and modeled.

Progenitor cells anterior to the MF expressed a basal level of Pnt-GFP, but expression

dramatically increased in cells immediately anterior to the MF (Fig. 3.2B). This was followed

by two successive pulses of Pnt-GFP expression, marked by peaks where protein expression

reached maximal amplitude. The pulses matched the visual stripes seen in regions 1 and 2

(Fig. 3.2A). Thereafter, Pnt-GFP decayed to a low basal level. The two pulses of Pnt-GFP

in progenitor cells coincided with the two periods of transition to R cell states (Fig. 3.2C,D).

Transitions to R8, R2/R5, and R3/R4 states occurred during the first pulse, while transitions

to R1/R6, and R7 states occurred during the second pulse.

Based on prior description of the distinct temporal expression patterns of isoform-

specific pnt transcriptional reporters [84], we suspected that each pulse of Pnt-GFP corre-

sponded to the induction of either PntP1 or PntP2. Using flies that carried the pnt-gfp
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transgene and either a pntP1- or pntP2 -specific reporter, we found that region 1 overlapped

with the domain of strongest pntP1 reporter expression, and region 2 corresponded to the

domain of strongest pntP2 reporter expression (Fig. 3.2E,F). Low levels of pntP2 reporter

expression were detected in region 1 and low levels of pntP1 reporter were detected in region

2. Therefore, Pnt expression appears as a PntP1-PntP2 pulse sequence. The two groups

of differentiating R cells predominantly expressed PntP1 or PntP2 respectively (data not

shown, see [213]), suggesting that specific Pnt isoforms are used to specify distinct cell fates.

All cell state transitions coincided with a rapid increase in Pnt-GFP (Fig. 3.2C,D).

The earliest identified R cells had, on average, 25-50% higher levels of Pnt-GFP than progen-

itor cells at comparable times. Pnt-GFP then rapidly decayed in all differentiating R cells,

with all but the R7 cell type exhibiting faster decay kinetics than progenitor cells. Thus,

transitioning R cells did not adopt stable high Pnt levels as predicted by a bi-stable model of

R cell fate specification. Rather, the measured Pnt-GFP expression dynamics were similar to

those previously reported for Yan [43]. Average levels of both proteins increased as the MF

passed, then decayed during cell state transitions. These similar population-wide dynamics

led us to ask how cell states are resolved from the co-expression of two transcription factors

with opposing transcriptional functions at the single cell level.

We explored this question by simultaneously measuring Pnt-GFP and Yan in each

nucleus using an anti-Yan monoclonal antibody. Previously, we had shown that Yan dynamics

measured with the antibody were almost identical to those measured by a YFP tagged version

of Yan [43], validating our approach. Pnt-GFP and Yan were induced at the same time in

progenitor cells (Fig. 3.2B,G). Yan levels reached a maximum amplitude between the two

pulses of Pnt-GFP. Yan then decayed back to a basal steady-state level, interrupted by a

transient plateau during the second pulse of Pnt-GFP. Despite their alternating maxima,

the overall induction and decay of Pnt-GFP and Yan were concurrent in progenitor cells.
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The similar dynamics prompted us to consider whether relative levels of Pnt and Yan

dictate cell state transitions in the eye. To explore this possibility, we measured the ratio

of Pnt-to-Yan in each progenitor cell. Strikingly, the average Pnt-to-Yan ratio remained

dynamically stable about a constant value over time (Fig. 3.2H). However, from 0 to 15 h,

there was considerable cell-to-cell heterogeneity in the ratio. Some cells had above-average

ratios when they were expressing peak levels of Pnt-GFP, and many cells had below-average

ratios when they were between the Pnt-GFP pulses. After the second pulse of Pnt-GFP

expression, cells acquired a slight bias towards Yan. These are the progenitor cells that

remain multipotent and are used to differentiate into other cell types later in development

[211]. As the two positive spikes in the ratio coincided with the two periods of cell state

transition, we reasoned that dynamic changes in the ratio might control the state of cells and

regulate their transit to differentiation.

As a first test of this idea, we quantified the levels of Pnt-GFP and Yan in cells that

had undergone R cell state transitions. We focused on R2/R5 and R1/R6 cells, since they are

representative of transitions of cells derived from groups 1 and 2, respectively. As previously

noted, Pnt-GFP levels were initially elevated in both R cells types (Fig. 3.3A,B). In contrast,

Yan levels were initially reduced (Fig. 3.3C,D), resulting in visibly higher Pnt-to-Yan ratios

than were detected in progenitor cells of comparable age (Fig. 3.3E,F). Both Pnt-GFP and

Yan levels rapidly decayed as R cells proceeded through the transit to differentiation, but

Pnt-to-Yan ratio remained elevated over time. Similar dynamics were evident in all other

R cell types (Fig. 3.4), suggesting that all R cell state transitions are accompanied by a

sustained change in the Pnt-to-Yan ratio relative to progenitor cells.

We then asked whether these shared dynamic trends reflect a common requirement in

order for differentiation to proceed. To address this question, we sharpened our focus on the

population of “young” R cells that coincide with the initial onset of R cell fate transitions.
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Figure 3.3. Pnt and Yan expression dynamics in R2/R5 and R1/R6 cells. (A, B) Pnt-
GFP expression, (C, D) Yan expression, and (E, F) Pnt-GFP to Yan ratio dynamics in R2/R5
(blue) and R1/R6 (red) cells. Progenitors are grey. Solid lines are smoothed moving averages across
250 and 50 samples for progenitor and R cells, respectively. Yellow shading indicates time spanned
by young R cells.

The average ratio of Pnt-to-Yan was elevated 1.5- to 2-fold in all young R cell types as soon

as we could confidently identify them (Fig. 3.5A). The ratio elevation was more pronounced

in some R cell types than others, but all increases were statistically significant (KS test,

p < 0.001).

We next asked whether elevated Pnt-to-Yan ratios precede the onset of R cell state

transitions. If R cells are recruited from a subpopulation of progenitors with relatively high

ratios, some progenitors should exhibit ratios comparable to those of early R cells. We

compared the distribution of Pnt-to-Yan ratios in young R cells versus concurrent progenitor

cells (Fig. 3.5B-F). The extensive overlap between the two populations implies that some

cells we morphologically classified as progenitors were actually transitioning to R cell fates.
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Figure 3.4. Pnt and Yan expression dynamics in additional R cell types. (A) Yan expres-
sion and (B) Pnt-to-Yan expression ratio dynamics for all annotated cell types. Shading denotes
bootstrapped 95% confidence interval for the moving average. (C-E) Pnt-GFP expression, Yan
expression, and Pnt-to-Yan ratio dynamics in (C) R8, (D) R3/R4, and (E) R7 cells. Yellow shading
indicates time spanned by young R cells. For all panels, colors denote cell type, while progenitors
are grey. Solid lines are smoothed moving averages across 250 and 50 samples for progenitor and R
cells, respectively.

Additionally, ratios may have increased among a subset of progenitors that did not ultimately

transition to an R cell state. Many progenitors also adopted low Pnt-to-Yan ratios during

this time period that did not overlap with the early R cell population. We reasoned that

these cells were not viable candidates for recruitment, suggesting that the extent of variation

in the ratio among progenitors constrains their competence for differentiation.

We then asked whether variation in the Pnt-to-Yan ratio strictly coincides with R cell

fate transitions. We anticipated that variability should arise within the pool of progenitors

from which R cells are recruited, then subside as fates are resolved. We previously reported
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Figure 3.5. R cell fate transitions coincide with increased Pnt-to-Yan ratios. (A) Com-
parison of Pnt-to-Yan ratio levels between young R cells (color filled boxes) and their concurrent
progenitors (grey filled boxes). Colors denote R cell types. For each R cell type, the ten earliest
identifiable R cells in each disc were designated as young R cells. Progenitor cells that fall within the
time window spanned by these young R cells were designated as concurrent progenitors. Asterisks
denote significance (KS 2-sample test, p < 0.001). (B-F) Joint distributions of Pnt-GFP and Yan
protein levels for young (B) R2/R5, (C) R1/R6, (D) R8, (E) R3/R4, and (F) R7 cells. Progenitor
cells concurrent with the corresponding young R cells are shown in grey. Red line denotes the
median Pnt-to-Yan ratio among the progenitor cells shown.

methods to quantify the dynamic cell-to-cell heterogeneity of Yan concentration [43]. We

applied similar analysis to simultaneously quantify the heterogeneity of Pnt, Yan, and the

Pnt-to-Yan ratio among both progenitors and early R cells (Fig. 3.6). A broad increase

in variation of the ratio among progenitors coincided with the time periods in which state

transitions occurred. Ratio variation was predominantly attributed to Yan and Pnt variability

during the first and second groups of R cell state transitions, respectively. Heterogeneity

among progenitors then decreased back to basal levels after all R cell fate transitions were

complete. Similar trends were evident among transitioning R cells, but with a more rapid

approach toward a consensus ratio following fate specification.
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Figure 3.6. Dynamics of expression variability in progenitor and R8, R2/R5 and
R1/R6 cells. Heterogeneities of (A) Pnt expression, (B) Yan expression, and (C) the log2-
transformed ratio are estimated by de-trending fluctuations about a moving average of 250 sequential
cells. Lines are moving averages of 250 sequential fluctuations, shaded regions are bootstrapped
95% confidence intervals for the moving average. Colors denote cell type.

3.4. Cooperative DNA-binding sensitizes promoters to changes in Pnt-to-Yan

ratio

How could cells reprogram transcription in response to a change in the Pnt-to-Yan

ratio across a wide range of absolute protein concentrations? Since both transcription factors

have overlapping sequence specificity for DNA binding [195, 197, 198, 203–205, 217], the

underlying mechanism may be a natural consequence of competition for binding sites in

target genes. To further explore this idea, we composed a simple equilibrium model in which

two species, Yan (Y ) and Pnt (P ), competing for a finite pool of shared binding sites, S:

Y + S
KD,Y an−−−−−⇀↽−−−−− SY

P + S
KD,Pnt−−−−−⇀↽−−−−− SP

(3.1)

where KD,Y an and KD,Pnt are equilibrium association constants and SY and SP denote the

bound species. Applying a mass balance to the total protein and binding site (S0) abundances:

Y0 = Y + SY

P0 = P + SP

S0 = S + SY + SP

(3.2)
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yields an analytically tractable system of nonlinear equations [218]. Given a pair of absolute

protein abundances (Y0, P0), the Pnt binding site occupancy is simply SP/S0. The phase

diagram offered by this simple model suggests that if the sites are saturated, equilibrium

occupancy by either factor is more sensitive to the relative concentration of the two factors

than to the absolute concentration of both species (Fig. 3.7A,B).

Figure 3.7. A simple two-species competitive binding model (A) Model schematic. (B)
Theoretical Pnt site occupancy as a function of transcription factor abundance. Equivalent binding
affinities are used for illustrative purposes. Simultaneous proportional increases in absolute abun-
dance of both species have minimal impact on Pnt occupancy, while varying ratio confers maximal
change.

However, the situation is more complex for Pnt and Yan. While there are several

well-documented target genes that contain common binding sites for Pnt and Yan [195, 197,

198, 206], Yan binds these enhancers with higher affinity than Pnt [197]. Moreover, recent

experiments suggest a scenario in which Pnt and Yan differentially interpret the structural

syntax of cis-regulatory modules [206]. This complex phenomenon is a consequence of

cooperative recruitment between adjacent chromatin-bound Yan molecules. Yan monomers

are able to polymerize via their sterile alpha motif (SAM) binding domains, enabling tightly-

bound Yan monomers at strong ETS sites to stabilize the recruitment of additional Yan

monomers to adjacent, weaker ETS sites or non-ETS sites [206, 219]. These cooperative

effects could conceivably bias the competition between Pnt and Yan, which led us to consider

a more complex model.



72

Hope, Rebay, and Reinitz recently introduced a modeling framework in order to probe

the effects of cis-regulatory syntax on Yan binding site occupancy [220]. The model considers

an ensemble of microstates, each defined by a unique configuration of vacant or Yan-bound

sites. Each microstate is assigned a thermodynamic potential based on the cumulative

influence of strong ETS-binding, weak non-ETS binding, and polymerization. We augmented

this model by incorporating Pnt as a second transcription factor that competes for occupancy

of the same binding sites (Fig. 3.8A).

Our formulation of the model is based on a single cis-regulatory element consisting

of n adjacent binding sites, each of which may be designated as ETS or non-ETS. Each

binding site may only exist in one of three binding states; bound by a single copy of Yan,

bound by a single copy of Pnt, or unbound. Thermodynamic potentials are assigned to each

binding state using two parameters for each transcription factor. The parameter αX defines

the free energy of transcription factor X binding to an ETS site, while βX defines the free

energy of binding to a non-ETS site (Fig. 3.8A). A unique configuration of binding states

for all n binding sites constitutes a single microstate, k. The thermodynamic potential of

each microstate is given by the superposition of thermodynamic potentials for each of its

constituent binding sites. For each microstate, the stabilizing effect of polymerization is

incorporated via a third parameter, γX , that defines the free energy of SAM-SAM binding

between a pair of similar transcription factors bound to adjacent sites. The net result is a

total thermodynamic potential, ∆Gk, for each microstate. An example enumeration of all

possible microstates for an element consisting of one ETS site preceding two non-ETS sites

is provided in Figure 3.8B. The statistical frequencies of each microstate are obtained via
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the canonical ensemble:

pk =
exp(
−∆Gk

RT
)[P ]aP (k)[Y ]aY (k)∑

k

exp(
−∆Gk

RT
)[P ]aP (k)[Y ]aY (k)

(3.3)

in which pk is the frequency of microstate k, [P ] and [Y ] are the Pnt and Yan concentrations,

aP (k) and aY (k) are functions representing the number of bound molecules of P and Y within

microstate k, T is a fixed temperature set to 300 K, and R is the gas constant. Fractional

occupancies for each binding site correspond to the cumulative frequency of all microstates

in which the site is occupied by a given transcription factor. Overall fractional occupancies

may then be computed by summing across all sites within the element.

Using this model, we sought to characterize the sensitivity of Pnt binding site oc-

cupancy to changes in the Pnt-to-Yan ratio without neglecting cooperativity derived from

cis-regulatory syntax. We first considered a scenario in which Yan and Pnt did not exhibit

cooperativity (Fig. 3.9A). In the absence of stabilizing SAM-SAM interactions, the landscape

of overall binding site occupancy is identical to that obtained with the simple binding model

described above (Figs. 3.9B and 3.7B). Increasing the Pnt-to-Yan ratio revealed a gradual

increase in Pnt occupancy for all individual binding sites (Fig. 3.9C). This titration contour

closely resembles a Langmuir isotherm or Michaelis-Menten saturation curve [221].

We then introduced a stabilizing SAM-interaction for Yan (Fig. 3.9D). The resultant

landscape of overall Pnt binding site occupancy is clearly distinguished from the simple

binding model by a sharpening of the transition from Yan to Pnt dominance in occupancy

(Fig. 3.9E). Weighting the energetic contributions of binding strength and polymerization

by the statistical frequency of each microstate revealed that the transition is driven by an

abrupt change in the dominant binding mechanism. Polymerization effects dominate binding
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Figure 3.8. Thermodynamic model of transcription factor DNA binding. (A) Summary
of thermodynamic interactions within one microstate of a cis-regulatory element containing one
ETS site and two non-ETS sites. Solid black lines represent individual binding sites. Green and
magenta rectangles denote Pnt and Yan molecules. Example thermodynamic potentials of strong
ETS-binding, weak non-ETS binding, and polymerization interactions are denoted by αPnt, βY an,
and γY an, respectively. For this microstate, aP (k) = 1 and aY (k) = 2. (B) Enumeration of all
possible microstates for a cis-regulatory element of length 3 in which only the first site carries the
ETS designation. Solid black lines denote binding sites, green and magenta rectangles denote bound
Pnt and Yan molecules. The cumulative thermodynamic potentials of each microstate, ∆Gk, are
listed beside each graphical depiction. Visual representation is adapted from [220]. (C) Relative
thermodynamic contributions of binding site affinity versus polymerization to microstate statistical
frequencies as a function of Pnt and Yan concentration. For each point in the plane, influence of site
affinity was calculated by weighting the sum of all ETS and non-ETS thermodynamic potentials
for each microstate by the statistical frequency of the corresponding microstate. The influence of
polymerization was analogously determined. The shown color scale reflects the relative magnitude
of these two summations, normalized by limits of zero and complete polymerization.

site occupancy when the Pnt-to-Yan ratio is low, while binding strength dominates when the

ratio is high (Fig. 3.8C).
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Increasing the Pnt-to-Yan ratio revealed nonlinear transitions from low to high Pnt

occupancy for each individual binding site (Fig. 3.9F). These transitions resemble Hill

functional forms [221], indicating the emergence of sharp thresholds that delimit distinct

regimes of transcriptional output. At low Pnt-to-Yan ratios, Yan is able to polymerize and

occupies all binding sites. At some critical Pnt-to-Yan ratio, Pnt-bound sites intersperse

Yan-bound sites such that Yan is no longer able to polymerize. Pnt then out-competes

Yan as the ratio increases further. These results recapitulate the long-standing notion that

cooperative DNA-binding sensitizes transcriptional output to changes in transcription factor

activity.

Assuming binding sites are saturated, then relative occupancy by Pnt and Yan is

agnostic to changes in the absolute abundance of either factor, as long as the Pnt-to-Yan

ratio remains constant. This mechanism, coupled with cooperativity, would enable modest

changes in the Pnt-to-Yan ratio to elicit large changes in DNA binding site occupancy by either

factor, and presumably large changes in mRNA synthesis given the opposing transcriptional

effects of Yan and Pnt.

3.5. Regulation stabilizes the ratio against varying Pnt and Yan concentrations

Equilibrium modeling suggests cell state transitions can proceed normally amidst

individual or cell-to-cell fluctuations in the absolute concentrations of Pnt and Yan. We

tested this idea by varying the genetic dosage of the pnt gene from one to two copies. Protein

output in Drosophila is approximately proportional to the number of copies of any given

gene [222], validating our strategy. We found that the eyes of adult flies were morphologically

indistinguishable across this pnt dosage range (Fig. 3.1B,C). A similar lack of dosage

sensitivity had been previously observed with the yan gene [43]. Because both sets of genetic

manipulations should in theory change the Pnt-to-Yan ratio, the absence of overt phenotypes
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Figure 3.9. Cooperative DNA-binding sensitizes transcriptional output to the Pnt-to-
Yan ratio. (A) Cartoon of competition between Pnt and Yan for occupancy of mutual binding
sites in the absence of Yan polymerization. (B) Overall binding site occupancy as a function of
transcription factor abundance in the absence of Yan polymerization. Color scale reflects overall Pnt
site occupancy. A diverging scale was used because all sites are fully saturated at total transcription
factor concentrations above 1 nM. Under the range of conditions shown, this implies that Yan
occupies all sites left vacant by Pnt. Simultaneous proportional increases in absolute abundance of
both species have minimal impact on Pnt occupancy (dashed arrow), while varying ratio confers
gradual change (solid arrow). (C) Pnt occupancy of individual binding sites as a function of Pnt-to-
Yan ratio in the absence of Yan polymerization. Contours correspond to a vertical path traversed
across panel B at a fixed Yan concentration of 50 nM. All binding sites behave similarly. (D)
Cartoon of competition between Pnt and Yan for occupancy of mutual binding sites when Yan
polymerizes via its SAM domain. (E) Overall binding site occupancy as a function of transcription
factor abundance when Yan polymerizes via its SAM domain. Color scale and arrows retain their
meaning from panel B. (F) Pnt occupancy of individual binding sites as a function of Pnt-to-Yan
ratio when Yan polymerizes via its SAM domain. Contours correspond to a vertical path traversed
across panel E at a fixed Yan concentration of 50 nM. Line colors reflect binding site positions
within the cis-regulatory element. Sites at intermediate distances from the strong ETS site (green
lines) transition at higher ratios than those nearest and furthest from the strong ETS site (blue and
yellow lines).

suggested that either cell state transitions are not sensitive to this ratio or that there are

active feedback mechanisms that drive cells back to the ideal ratio.

To distinguish between these possibilities we asked whether the ratio of Pnt-GFP to

Yan protein is sensitive to the abundance of Pnt-GFP protein. We quantified Pnt-GFP levels

in eye cells containing either one or two copies of the pnt-gfp transgene in a pnt mutant

background. As expected, Pnt-GFP protein concentration varied proportionally to pnt-gfp

gene copy number (Fig. 3.10A,B). Interestingly, average Yan protein concentration also

scaled with pnt-gfp gene copy number (Fig. 3.10C,D) resulting in an essentially identical
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Pnt-to-Yan protein ratio (Fig. 3.10E). The dependence of Yan protein output on pnt-

gfp gene copy number parallels our previous finding that pnt mutant cells had lower Yan

protein concentrations [43]. We conclude that the network regulating Yan protein output

compensates for variation in the abundance of Pnt to maintain a constant Pnt-to-Yan ratio.

Effective control of the Pnt-to-Yan ratio would require a similar dependence of Pnt

protein output on the concentration of Yan. We assessed this prediction by quantifying

Pnt-GFP protein in cells with different copy numbers of the yan gene. Due to the embryonic

lethality of yan-null mutations, we conducted this experiment by inducing yan-null clones

in the developing eye, and using an Ubi-mRFPnls marker to identify genotypes of cells

in the clones. Cells with different yan gene dosages exhibited different Pnt-GFP protein

concentration (Fig. 3.10F,G). Notably, Pnt-GFP levels were correlated with yan gene dosage

in progenitor cells immediately posterior to the MF. We quantified this effect by measuring

Pnt-GFP protein concentration in cells with or without a copy of the wildtype yan gene (Figs.

3.10H). Pnt-GFP expression was higher in cells with one or more copies of yan than in cells

with zero copies (Mann-Whitney U test, p < 0.001), suggesting that Pnt protein output is

dependent on the abundance of Yan protein. Overall, these data suggest cells compensate for

fluctuations in Pnt or Yan protein abundance by adjusting the level of the opposing protein.

Yan expression was not quantified in this experiment due to limiting availability of

fluorescence reporters with non-overlapping emission spectra. We were therefore unable

to determine whether the Pnt-to-Yan ratio is robust to changes in yan dosage. However,

the data suggest that cells respond to an increase in yan gene dosage by increasing their

Pnt protein levels. Our wildtype data indicate that the Pnt-to-Yan ratio remains constant

over time (Fig. 3.2H). It is therefore possible that mutual compensation between Pnt and

Yan help preserve the ratio by buffering fluctuations in the abundance of either protein. If

this mutual compensation occurs on a sufficiently fast timescale, it could account for the
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constant Pnt-to-Yan ratio we observed in progenitor cells, despite large changes in Pnt and

Yan concentration over time (Fig. 3.2B,G).

Figure 3.10. The Pnt-to-Yan ratio is stabilized against varying Pnt and Yan concen-
trations in progenitor cells. (A-D) Moving averages of (A, B) Pnt-GFP and (C, D) Yan levels
in progenitor and differentiating cells with one (A, C) versus two (B, D) copies of the pnt-gfp gene.
Measurements used DAPI to mark nuclei. Colors denote cell type. Shaded regions are bootstrapped
95% confidence intervals for the moving average. (E) Comparison of Pnt-to-Yan ratios between
progenitor cells with one versus two copies of pnt-gfp during cell fate transitions. Colors denote
cell fate transition periods for each R cell type. These time periods are defined in each disc by the
times spanned by the first ten identifiable R cells. The concurrent progenitor cell populations are
selected from these time windows. Light grey filled boxes denote 1x pnt-gfp, dark grey filled boxes
denote 2x pnt-gfp. Pnt-to-Yan ratios in progenitor cells are indistinguishable between gene dosages
during R8, R2/R5, and R1/R6 cell fate transitions (KS 2-sample test, p < 0.001). (F-G) Confocal
image slice of progenitor nuclei in a disc containing loss-of-function yan clones. RFP fluorescence
marks wildtype yan. (H) Quantitative comparison of Pnt-GFP expression between yan genotypes.
Progenitor cells were assigned yan genotypes based on measured RFP level, and Pnt-GFP levels
were corrected to account for fluorescence bleed-through (see 2.4). Pnt-GFP levels decrease when
no gene copies of yan are present (Mann-Whitney U tests). Red dots denote the median of each
distribution, thick grey lines denote the interquartile range.
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3.6. Notch signaling lowers the Pnt-to-Yan ratio in progenitor cells

Progenitor cells are dynamically stable about a constant Pnt-to-Yan ratio, but this

fixed ratio changes as cells transition to an R cell state. We next asked how the ratio is

set in individual cells targeted for differentiation. Notch and RTK signaling provide both

transcriptional and post-transcriptional inputs to the Yan-Pnt network [83], and therefore

present prime candidates to establish and modulate the Pnt-to-Yan ratio. The two pathways

generally exert opposing influence on R cell state transitions. Notch signaling is required to

maintain progenitor cells in a multipotent state [212], and ensures proper patterning of the

first group of R cells by constraining the proximity of adjacent R8 cells [35, 78]. Conversely,

RTK signaling is required to initiate each of the subsequent R cell state transitions [208].

Both signaling pathways influence the Pnt-Yan network in multipotent eye cells [81, 82, 199].

Notch stimulates Yan expression [223], while RTK activates PntP2 and stimulates PntP1

expression [84, 199] while attenuating the pulse of Yan expression [43, 82]. The precise

influence of Notch and RTK signaling on the Pnt-to-Yan ratio are difficult to predict as the

two pathways are coupled by feedback within and beyond the Pnt-Yan network [29, 223, 224].

We used a temperature-sensitive Notch mutant [225] to measure the impact of Notch-

mediated signaling on Pnt-GFP and Yan. We divided the eye field into two regions for

analysis purposes (Fig. 3.11A, dashed yellow line). The first region starts anterior to the

MF and ends in the region of R8 cell specification. The second region extends ∼ 10 columns

of R8 cells posterior to the first region. These regions contain the first and second pulses of

Pnt-GFP, respectively (Fig. 3.11A, thick black lines).

At the non-permissive temperature, progenitor cells had visibly reduced Yan levels

(Fig. 3.11A,B), consistent with previous reports of Yan expression’s dependence on Notch

signaling in the developing eye disc [223]. Pnt-GFP levels were also reduced in region 1, but
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Figure 3.11. Spatial analysis of Pnt and Yan expression in N ts eye discs. (A,B) Maximum
intensity projections across confocal layers spanning progenitor cells when Notch signaling is (A)
active and (B) restricted. Middle and right panels show Pnt-GFP and Yan expression, left panel
shows merge. Black bars denote first and second periods of elevated Pnt-GFP expression. Dashed
yellow line indicates boundary defining Figures 3.12A and 3.12B. (C,D) Distances between adjacent
ommatidial columns in Notch mutant discs. (C) Procedure used to estimate inter-column distance.
Neighboring R8 cells are identified by Delaunay triangulation. Edges are filtered to those within 30 to
60 degrees of the anterior-posterior axis. Inter-column distance (ICD) is estimated by averaging the
anterior-posterior distance between neighbors (solid orange line). (D) ICDs are more variable when
Notch signaling is restricted (red) than under wildtype (grey) conditions. Black bars denote median,
numbers show the number of R8 cells included. High variability prevents accurate estimation of
MF velocity and precludes conversion of spatial positions to developmental times.

appeared close to normal at later times (Fig. 3.11A,B). Attempts to study ratio dynamics in

mutant eye discs were challenging. Notch is essential for proper patterning of R8 cells, so the

mutant eye discs had distorted spacing of R8 cells at the non-permissive temperature (Fig.

3.11C). The irregularity of the intervals between adjacent columns of R8 cells precluded

the conversion of spatial position along the anterior-posterior axis to developmental time.

As an alternative to our standard quantitative analysis, we visualized the effects of Notch
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by mapping the pixel-wise difference between Pnt-GFP and Yan to a diverging color scale

(Fig. 3.12A,B). Direct visualization of the ratio yielded a very similar view of differential

Pnt-GFP/Yan expression, but was prone to computational errors imparted by zero-valued

pixels. This qualitative analysis was limited to optical sections specifically spanning the

progenitor cells.

At the non-permissive temperature, the Notch mutant showed a consistently higher

Pnt-to-Yan ratio in progenitor cells in region 2 (Fig. 3.12A). This observation suggests that

Notch signaling maintains a low Pnt-to-Yan ratio in these undifferentiated cells. The known

role of Notch in maintaining multipotency in region 2 [212] is consistent with our hypothesis

that cell state transitions are mediated by the transcription factor ratio.

The Notch mutant revealed more complex behavior in region 1, where the first group

of R cell transitions occur. In this region Notch is required for patterning of the R8 lattice

[78]. At the permissive temperature, there was a periodic pattern in the Pnt-to-Yan ratio of

progenitor cells (Fig. 3.12B). Clusters of cells with higher ratio alternated with clusters with

lower ratio. We quantified the periodicity of this pattern by evaluating the similarity of ratios

between cells as a function of their separation distance (Fig. 3.12C). We detected periodic

spatial patterns with a constant period of oscillation that was approximately equivalent to the

length scale separating adjacent R8 cells (Fig. 3.12D,E). Since young R8 cells have elevated

Pnt-to-Yan ratios, we infer that periodic clusters of high-ratio progenitor cells give rise to the

R8, R2/R5, and R3/R4 cells. At the non-permissive temperature, the Pnt-GFP/Yan pattern

was strongly impaired (Fig. 3.12B). The ratio was more uniform along the dorso-ventral

axis, and while there were modestly detectable oscillations in the ratio, their period was not

stable (Fig. 3.12F,G).

These results are consistent with the consensus understanding that Notch signaling

serves dual roles in R8 fate determination. Initially, Notch pushes clusters of progenitor
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cells towards an R8 cell state. Later, Notch restricts differentiation to ensure only one cell

per cluster adopts an R8 state [32, 78, 226]. If Notch signaling is inhibited, very few high

Pnt-to-Yan ratio clusters and R8 cells are formed because the first step is blocked [32]. If

cell state transitions are coupled to the Pnt-to-Yan ratio, then the Notch mutant would not

be expected to have high-ratio clusters in region 1. This is precisely what we observed.

3.7. Ras signaling elevates the Pnt-to-Yan ratio in progenitor cells

RTK signals received by progenitor cells trigger their transition to R cell states [208].

We quantitatively probed the effect of RTK signaling on Pnt-GFP dynamics and the Pnt-

to-Yan ratio by using a temperature-sensitive EGFRts allele that restricts RTK signaling

[227]. At high temperatures, the mutant blocks RTK signal transduction, which triggers

cell death and allows only R8 neuron patterning. However, animals raised at intermediate

temperatures achieve normal recruitment of R8, R2/R5, and R3/R4 neurons, but fail to

recruit most R1/R6 and R7 cells [43].

At intermediate temperatures, the entire second pulse of Pnt-GFP expression disap-

peared upon restriction of EGFR activity (Fig. 3.13A). Because the second pulse can be

predominantly ascribed to PntP2 expression (Fig. 3.2F), this result conflicts with a report

that PntP2 expression is not dependent upon RTK signaling [84]. At intermediate signaling,

Yan levels were also reduced, resulting in Pnt-to-Yan ratios that were indistinguishable from

wildtype during the second wave of state transitions (Fig. 3.13B,C).

We next asked whether RTK signaling is sufficient to induce an increase in the Pnt-to-

Yan ratio of progenitor cells by expressing a constitutively-active form of Ras [228, 229]. This

construct uses a sev promoter to drive Ras expression, limiting its effects to the second region

of Pnt-GFP expression. Constitutive Ras activity dramatically increased the amplitude and

duration of the second pulse of Pnt-GFP expression in progenitor cells (Fig. 3.14A) but did
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Figure 3.12. Notch signaling lowers the Pnt-to-Yan ratio in progenitor cells. (A) Visu-
alization of relative Pnt and Yan expression in progenitor cells in region 2 when Notch signaling is
active (left panel) and restricted (right panel). Color scale reflects the difference between Pnt-GFP
and Yan fluorescence. Black lines denote periods of elevated Pnt-GFP expression. See methods
for details on post-processing of images. (B) Equivalent visualization during the first wave of cell
state transitions. Gold arrows mark clusters of elevated ratio. (C-E) Spatial periodicity in the
Pnt-to-Yan ratio when Notch signaling is active. Analysis is focused on progenitor cells immediately
posterior to the MF. (C) Spatial correlation functions for four eye discs. Black lines show moving
average correlation of Pnt-to-Yan ratio between cells as a function of their dorso-ventral separation
distance. Oscillations indicate alternating regions of similar and dissimilar Pnt-to-Yan ratio. Lines
are first-order Savitzky-Golay filtered with a window size of 50. Shaded region depicts bootstrapped
95% confidence interval for the moving average. Cell counts are shown for each disc. Red lines
depict random expression (no pattern). (D) Normalized Lomb-Scargle periodograms for each disc.
Spectra are constructed from individual progenitor cell measurements for periods ranging 50 to
200 px. Grey lines denote spectral power attributed to each frequency. Dashed red significance
thresholds are obtained by bootstrap resampling. Asterisks denote signal frequencies exceeding the
confidence threshold. In all discs, a pattern in Pnt-to-Yan ratios repeats on a length scale of 73-82
px when Notch signaling is active. (E) Distribution of dorso-ventral separation distances between
adjacent R8 neurons in each disc. Mean values are consistent with the length scale of periodicity.
(F,G) No periodicity is detected above the significance threshold when Notch signaling is restricted.

not significantly alter Yan expression dynamics (Fig. 3.14B). This yielded a sustained increase

in Pnt-to-Yan ratio in progenitors during the second wave of state transitions (Fig. 3.14C),
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Figure 3.13. Pnt and Yan expression dynamics in EGFRts eye discs. (A-C) Effects of
EGFRts on (A) Pnt-GFP, (B) Yan, and (C) Pnt-to-Yan ratio dynamics in progenitor cells. Lines
are moving averages across 250 sequential cells. Shaded regions are bootstrapped 95% confidence
intervals for the mean. Solid lines and grey shading denote wildtype controls. Dashed lines and red
shading denote restricted EGFR signaling. Black bars denote second period of elevated Pnt-GFP
expression.

as well as the ectopic differentiation of R cells. As previously reported [229], supernumerary

cells included extra R7 cells, as well as additional R cells whose identities were not discerned

due to their aberrant positioning.

We sought to determine whether these ectopic R cells emerged from a pool of pro-

genitors with abnormally high Pnt-to-Yan ratios. Focusing our analysis on progenitor cells

concurrent with the ectopic induction of R cells revealed that their ratios were higher than

those of wildtype progenitor cells at comparable times (Fig. 3.14D,E grey boxes). Nearly

all young supernumerary R cells had ratios that were within the range of mutant progenitor

cells, and were above the range observed in wildtype cells (Fig. 3.14D,E blue and purple

markers). These observations suggest that abnormally high Pnt-to-Yan ratios in progenitor

cells accompany ectopic R cell state transitions.
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Figure 3.14. Ras signaling elevates the Pnt-to-Yan ratio in progenitor cells. (A-C) Ef-
fects of constitutive Ras signaling on (A) Pnt-GFP, (B) Yan, and (C) Pnt-to-Yan ratio dynamics
in progenitor cells. Lines are moving averages across 250 sequential cells. Shaded regions are
bootstrapped 95% confidence intervals for the mean. Solid lines and grey shading denote wildtype
controls. Dashed lines and red shading denote constitutive Ras signaling by Sev > RasV 12. Black
bars denote periods of elevated Pnt-GFP expression. We previously reported a modest increase
in the duration of Yan-YFP expression in Sev > RasV 12. mutant progenitor cells [43], but this
difference was not detected using the Yan antibody. (D, E) Comparison of Pnt-to-Yan ratios
between wildtype and Sev > RasV 12 progenitor cells concurrent with the ectopic differentiation
of (D) unidentified R cells and (E) R7 cells in Sev > RasV 12 discs. Markers denote the first 25
supernumerary R cells.

3.8. Ratiometric control as a model for cell fate commitment

Successful cell state transitions usually require changes in mRNA and protein expres-

sion, which are often dictated by transcription factors. It is widely believed that expression

depends on the absolute concentration of these factors [230]. We have identified a scenario in

which cells respond to the ratio in abundance of two transcription factors rather than to the

absolute concentration of either protein. This novel mechanism is made possible by several

characteristics of the system. First, target genes of these factors are induced when cells

transit to differentiated states, and expression of these targets is necessary for differentiation

[197, 231]. Second, both factors bind to the same DNA sites in their target genes. Third,

they exert opposing effects on transcription.
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A theoretical analysis reveals that, under these conditions, relative site occupancy

by either factor determines whether or not a target gene is transcribed. When binding

sites are saturated, the probability a site is occupied by one of the factors is controlled

by the ratio of factor concentrations and not by the absolute concentration of the factors.

This mechanism allows the transcription factors to have pulsatile expression dynamics and

still consistently regulate transcription. Regulation of genes through pulsatile dynamics of

competing transcription factors with opposing effects has been reported in yeast [232]. In the

developing eye, however, this competition relies on the ratio of the two factors to differentially

regulate genes. Perhaps the pulsatile dynamics of Pnt and Yan allow R cell state transitions

to be restricted to a specific period of developmental time.

We developed a model to demonstrate that stabilizing interactions between adjacently

bound monomers can sensitize enhancer occupancy to the relative abundance of two com-

peting transcription factors. The model does not offer a rigorous characterization of the

competition between Pnt and Yan for a specific enhancer, as the data required to construct

such a model are not available. For example, it is unknown whether nuclear concentrations

of Pnt and Yan protein are of an equivalent order of magnitude in differentiating eye cells.

Similarly, we do not know the strength, number, or arrangement of bindings sites in the

enhancers targeted by Pnt and Yan. However, the conclusions we have drawn from our model

do not rely upon specific values for these variables, and are consequently not anchored to the

specific details of any one system.

In general, the proposed ratiometric sensing mechanism is well suited when either

or both transcription factors bind their target sites in a manner stabilized by cooperative

interactions. Like its human ortholog TEL1 [233], DNA-bound Yan monomers enhance

recruitment of Yan to adjacent binding sites through stabilizing SAM-SAM polymerization

[234]. We show theoretically that such cooperativity could generate threshold-like behavior
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and cause ultrasensitive switching in site occupancy between Yan and Pnt. In this model, the

switching is agnostic to the absolute abundance of either transcription factor as long as their

relative ratio can be precisely controlled. This mechanism would enable state transitions to

proceed despite variation in protein concentrations driven by fluctuations in metabolism, cell

volume, expression noise, environmental conditions, genetic polymorphisms, or gene copy

number.

The average Pnt-to-Yan ratio is dynamically stable about an approximately constant

value within each cellular state, and only exhibits transient fluctuations when cells switch

states. These dynamics reflect the capacity of the system to coordinate the relative expression

of the two transcription factors. We have found that the abundance of each transcription

factor depends upon the expression of the other factor. Dependencies of this type are often

depicted as positive or negative regulation in cartoons of qualitative regulatory interactions

(Fig. 3.15A). We believe that as biology becomes increasingly quantitative it will be more

fruitful to emphasize an empirical description of system dynamics based on control theory

(Fig. 3.15B).

From a control perspective, a system of cellular components monitors the relative

abundance of Pnt and Yan and takes corrective action when the ratio deviates from a specified

reference value. The particular components responsible for implementing control may remain

unspecified. This perspective eschews molecular events in favor of minimizing complexity, but

preserves the salient features of a detailed molecular mechanism and can enable quantitative

predictions.

Fluctuations in the absolute abundance of one factor are mitigated by compensatory

adjustment of the other. Notch or RTK activity could modulate Pnt or Yan protein levels

to transiently perturb the Pnt-to-Yan ratio (Fig. 3.15B, dashed black arrow). These signals

could permanently set the ratio by adjusting the reference value (Fig. 3.15B, dashed red
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arrow). We advocate this control theoretic perspective because it more accurately conveys the

fundamental strategy underlying system behavior. Furthermore, accurate model predictions

would only require the evaluation of a small number of parameters that characterize Pnt-

to-Yan ratio dynamics, obviating the need for experimental measurement of reaction rates

during R cell specification in Drosophila.

Figure 3.15. Conceptual models for regulation of the Pnt-to-Yan ratio. (A) Cartoon of
qualitative regulatory interactions suggests Pnt and Yan protein levels are coupled by reciprocal
positive feedback (solid lines), while Notch and Ras signaling adjust the Pnt-to-Yan ratio by modu-
lating the levels of each protein (dashed lines). (B) Block diagram of ratio control in the Pnt-Yan
network. Lines represent values, rectangles indicate functions, and the circle is a comparison point.
The Pnt-to-Yan ratio is compared against a basal reference value, and the difference is fed into
a regulatory network that acts to drive the ratio back toward the reference value. Extracellular
signals transiently perturb the ratio by modulating Pnt or Yan protein levels (dashed black line),
or set the ratio by adjusting the reference value (dashed red line).

We have shown that dynamic changes in the Pnt-to-Yan ratio are coupled to cell state.

Our favored interpretation is that the ratio determines which state a cell is in. Direct testing

of this hypothesis remains difficult because the observed ratio control strategy precludes gene-

level manipulation of the ratio. Instead, we acknowledge that our observations are correlative.

We cannot discard the possibility that Notch and RTK signaling regulate state transitions

in a manner that is not only mediated by the Pnt-to-Yan ratio but by other mechanisms

as well. We emphasize, however, that ratio control enforces stability when cells are in one

state, which implicates the ratio as an active cell state determinant. Moreover, qualitatively

different approaches to experimentally manipulate the ratio affected cell state transitions in

a consistent manner. Both Notch inhibition and Ras activation increase the ratio and cause

abnormal R cell state transitions [229, 235]. Single-cell dynamical measurements of Yan and

specific Pnt isoforms during isoform-specific perturbations may ultimately prove necessary to
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determine definitively whether ratios directly mediate transitions. The regulatory mechanism

described here provides insight into how the relative dynamics of competing transcription

factors can be used to pattern complex epithelia, and may also aid design of synthetic

regulatory systems based on ratiometric sensing.
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CHAPTER 4

Layered repression synchronizes development with cellular

metabolism

A manuscript resembling this chapter was coauthored with Justin Cassidy, Rachael

Bakker, Ritika Giri, Nicolás Peláez, Bryan Eder, Anna Bobrowska, Neda Bagheri, Lúıs

Amaral, and Richard Carthew. The preprint is available at https://doi.org/10.1101/

548032. All of the experiments were conceived, designed, and executed by my colleagues.

In particular, Justin Cassidy obtained the wealth of data that ultimately made this work

possible. My contributions include all of the computational modeling and simulations. Much

of the text was either written by or under the guidance of Professor Richard Carthew.

4.1. Background on the environmental dependence of developmental tempo

Animal development occurs over a defined timescale, which requires control of the

rates of developmental processes. Developmental timescales are an intrinsic feature of a

species, and are not necessarily determined by external clocks [236]. Rather, the pace of

development is encoded in the genome. Development occurs via a stereotypic sequence of

events involving cell division, growth, movement, apoptosis, polarization, and differentiation.

Correct assembly of functional structures depends upon synchronization of cell division and

differentiation events [237, 238]. Small variation in timing produces variation in structure

that is observed between individuals [239, 240]. Abnormal timing can result in structural

defects that lead to compromised survival [241].

https://doi.org/10.1101/548032
https://doi.org/10.1101/548032
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While developmental tempo is a fundamental property of a species, it can vary under

different conditions. For example, temperature affects the pace of development in many

ectotherms, such as arthropods, nematodes, fish, and reptiles [242–245]. Diet and food intake

also affect organismal growth rate and the pace of development for many species, including

humans [246–249]. Finally, cellular metabolism can alter the pace of development. For

example, the evolutionarily conserved Clk1 gene encodes a mitochondrial enzyme necessary

for normal cellular respiration [250], and loss of the clk1 gene in nematodes and mice results in

developmental delays [251–253]. In Drosophila, restricting glucose consumption by cells slows

development [254–257]. West and colleagues formulated a general quantitative model that

relates developmental tempo to both cellular metabolic rate and temperature [258]. Strikingly,

the model fits meta-data spanning several kingdoms, suggesting a universal relationship

between metabolism and developmental tempo.

Many developmental processes involve specification of different cell types in a stereo-

typed sequence. All of these differentiated cell types originate from progenitor cells. The

sequence of cell differentiation is driven by changes in the gene expression program within

progenitors. Gene regulators, typically transcription factors, are sequentially activated and

repressed, resulting in transient periods of increased activity. During these periods, they

change gene expression in the progenitors. This coincides with and causes a temporal series

of cell fate decisions. Since these regulators frequently interact with one another, the entire

cascade constitutes a gene regulatory network (GRN). Such GRNs have been characterized

for embryogenesis [259, 260], development of the central nervous system [261], and devel-

opment of the sensory nervous system [262]. Because the tempo of development can vary,

GRN dynamics must be able to reliably adjust to a variable timing mechanism. Therefore,

understanding how these GRNs adapt to a variable timescale is crucial for understanding

the mechanisms of animal development.
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Phenomenological observations suggest that there are limits to the timescales to which

development may adapt. While broiler chickens have been successfully bred for rapid growth,

frequent abnormalities in musculoskeletal development are evident in such breeds [263, 264].

Animals (and humans) experience hyper-normal growth rates if they initially experience

delayed growth [246]. Such compensatory growth is linked to a variety of developmental and

physiological defects [248]. Conversely, slowing growth can alleviate defects caused by muta-

tions that impair development. As first noted by T.H. Morgan, morphological phenotypes

can be suppressed by limiting the nutrition of mutant animals [265–268]. Likewise, raising

animals under lowered temperatures can sometimes suppress the phenotypes of mutations

that are not classical ts alleles [269–272]. Collectively, these observations suggest an unknown

mechanism ensures successful developmental outcomes amidst variability in developmental

tempo.

Here, we have explored this mechanism. We find that impairing gene repression

in GRNs causes developmental errors but only when cell metabolism and growth rate are

normal. When either energy metabolism or protein anabolism are reduced, developmental

errors are reduced or even suppressed. We find that this relationship between metabolism

and repression is so prevalent that the entire microRNA family becomes unnecessary when

metabolism is slowed. Using a general quantitative modeling framework for regulated gene

expression, we show that multiple layers of weak repression render gene expression dynamics

independent of variable biochemical rates. When rates are modestly reduced, fewer repressors

are needed to ensure normal expression dynamics. We experimentally validate this model

prediction by following GRN dynamics in Drosophila. Our findings support a new mechanism

whereby layers of gene repression allow development to occur over a wider range of time

scales, enabling development to proceed faster if metabolic conditions allow for it. The need
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for flexible error frequency suppression could provide an evolutionary impetus for the high

prevalence of genetic redundancy.

4.2. Repressors are less impactful when metabolism is reduced

Developmental patterns arise from directed dynamics of cell-cell signaling and gene

regulation. The sensory organs of Drosophila are a classic system with which to study these

phenomena [273]. A broad collection of gene mutations has specific effects on the formation

of various sensory organs, and these mutations have been instrumental in uncovering the

molecular mechanisms of sensory organ development. The affected genes encode transcription

factors, microRNAs, signaling factors, and other gene regulators. We used such gene muta-

tions to readdress the relationship between reduced metabolism and phenotype suppression

that was first observed by Morgan [266, 267]. We did so by scoring Drosophila sensory mutant

phenotypes under conditions of reduced energy metabolism. We generated animals that had

reduced metabolism by genetic ablation of their insulin producing cells (IPCs) in the brain

(Fig. 4.1A). This ablation reduces the amount of glucose that cells consume [256], resulting

in 70% slower development (Fig. 4.1B), and small but normally proportioned adults (Fig.

4.1C) [256].

We first examined mutations affecting formation of the compound eye. The microRNA

miR-7 represses expression of the Yan transcription factor in the developing eye [16]. Yan

protein is transiently expressed in the eye [43], and is cleared from differentiating photorecep-

tor (R) cells by multiple repressors acting on its transcription, mRNA stability, and protein

stability [83]. When the miR-7 gene was specifically ablated in the compound eye of an

otherwise wildtype animal, it resulted in small malformed adult eyes due to errors in R

cell differentiation (Fig. 4.2A). This phenotype was highly penetrant in genetically mosaic

animals (Fig. 4.2B). However, when energy metabolism was slowed by IPC ablation, loss
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Figure 4.1. IPC ablation slows development by restricting energy metabolism. (A)
Strategy to ablate IPCs (red) in the young fly brain. Gal4 expressed under control of the promoter
for the Insulin-Like Peptide 2 (ILP2 ) gene drives production of the pro-apoptotic protein Reaper
(Rpr) specifically in IPCs of the brain. (B) The number of days after egg laying (AEL) at which
the first individual in either wildtype or ILP2 > Rpr populations eclosed (hatched from pupa into
adult) is shown, as is the time at which the last individual in each population eclosed. Population
sizes for wildtype and ILP2 > Rpr were 126 and 185, respectively. (C) Adult body size is affected
by IPC ablation. Two females that were raised at the same time and temperature. The left yw
animal has normal metabolism, whereas the right animal has slowed metabolism due to ablation of
its IPCs.

of miR-7 was much less important for the formation of correctly patterned eyes (Fig. 4.2B).

We also examined mutations affecting cell-cell signaling. The Sevenless (Sev) receptor tyro-

sine kinase hyper-activates MAP kinase in certain eye progenitor cells, leading to enhanced

turnover of the Yan protein [82]. This enables cells to differentiate into R7 photoreceptors [29].

When sev is mutated, cells completely fail to differentiate as R7 photoreceptors. This effect

was readily apparent by staining for an R7-specific marker protein (Fig. 4.2C). However,

slowing metabolism allowed a small but significant number of sev mutant cells to become R7

photoreceptors (Fig. 4.2D). Importantly, since the sev mutant makes no protein products

[274], rescue of the mutant phenotype was not simply due to more functional Sev protein

molecules being present in slowly metabolizing cells.

We also examined formation of other sensory organs for evidence of metabolic interac-

tions. Large sensory bristles develop in a highly stereotypic pattern over the Drosophila body.

The protein Senseless (Sens) transiently appears in a cluster of proneural cells before one

cell is chosen to differentiate into a sensory bristle [275]. MicroRNA miR-9a represses Sens
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Figure 4.2. Eye developmental defects are rescued by slower energy metabolism. (A)
Genetically mosaic individuals with a miR-7+ body and a miR-7 mutant eye. Left individual with
mispatterned eye has its IPCs intact while the right individual with a normally patterned eye has
had its IPCs ablated by ILP2 > Rpr. (B) Eye patterning is more normal if mosaic individuals slowly
metabolize due to IPC ablation. Sample population sizes were between 264 and 467 individuals. P
values from Chi-square test with Yates correction. (C) Eye cells stained for specific protein markers
such that R7 cells (white) can be distinguished from other R cells (purple) and bristle cells (green).
Each ring-like cluster of R cells is an ommatidium. Null mutation of sev results in no R7 cells (right).
(D) Slow metabolism due to IPC ablation increases the fraction of ommatidia that contain an R7
cell in sev mutants. Each data point represents one eye sample; between 481 and 837 ommatidia
were scored for R7 cells within each eye sample. P value is from a one-way ANOVA with Bonferroni
correction.

protein expression, and miR-9a mutants frequently develop ectopic sensory bristles because

this repression is missing (Fig. 4.3A,B) [94, 276]. However, when miR-9a mutants had their

IPCs ablated, errors in bristle number were greatly reduced (Fig. 4.3C).

The protein Hairy directly represses transcription of the proneural genes achaete

and scute during selection of cells for bristle fates [277]. Mutation of hairy causes some

individuals to develop ectopic large bristles. However, this effect of hairy mutation was

strongly suppressed when energy metabolism was slowed (Fig. 4.3C). We saw a similar effect

on a cis-regulatory module (CRM) that represses gene transcription. The Sternopleural
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(Sp-1 ) mutation is present in a CRM located on the 3’ side of the wingless (wg) gene [278],

causing Wg misexpression and development of ectopic bristles [278]. However, the ectopic

bristle phenotype of the wgSp−1 mutant was completely reversed under conditions of slowed

energy metabolism (Fig. 4.3D).

Figure 4.3. Sensory bristle developmental defects are rescued by slower energy me-
tabolism. (A) Number of scutellar bristles is frequently greater than four in a miR-9a mutant
whereas it is almost invariably four in wildtype. (B) Distribution of scutellar bristle numbers in
wildtype and miR-9a mutant populations. Population sizes for wildtype and miR-9a were 301
and 222, respectively. The cumulative frequency distributions between wildtype and mutant were
significantly different (p < 0.0001, KS test). (C) IPC ablation increases the proportion of miR-9a
mutants and hairy mutants that have the wildtype number of scutellar bristles. ****, p < 0.0001;
n.s., p > 0.05 (D) Under normal metabolic conditions, wgSp−1 displays an increased number of
sternopleural bristles. IPC ablation dramatically increases the number of mutant individuals with
the wildtype number of three sternopleural bristles. Shown in each panel is the number of individuals
with bristle number of three versus the total number of individuals scored. IPC ablation significant
suppresses the wgSp−1 mutant phenotype (p < 0.0001, Fishers exact test).

4.3. MicroRNAs are dispensable when metabolism is reduced

The mutations thus far examined affect diverse types of regulators, including mi-

croRNAs, transcription factors, and signaling molecules. Despite this diversity, all of the

mutations have something in common: they affect repressive interactions between genes.

To explore the prevalence of this relationship between gene repression and metabolism, we
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eliminated an entire family of regulatory repressors that control all stages of Drosophila

development. The microRNA family is composed of 466 distinct microRNAs in Drosophila

melanogaster [279]. Virtually all microRNAs require Dicer-1 (Dcr-1) protein for their proper

biosynthesis, and Ago1 protein as a partner to repress target gene expression [280]. Protein-

null mutations in either dcr-1 or ago1 genes are lethal [281]. We raised different null dcr-1

mutants under conditions of slower energy metabolism, and found that many more animals

survived development (Fig. 4.4A). Ago1 null mutants are normally 100% embryonic lethal,

but mutant lethality was broadly suppressed when animals slowly metabolize due to IPC

ablation (Fig. 4.4B). The mutants survived to adulthood, and most survivors had normal

eye and bristle patterns as well as other body structures, indicating the rescue of a massive

array of developmental defects (Fig. 4.4C). Rescue could also be seen when Ago1 was

specifically ablated in cells of the compound eye; eye development was strongly rescued by

slower energy metabolism (Fig. 4.4D). Therefore, a major class of regulatory repressors is

rendered non-essential when energy metabolism is slowed.

4.4. Modeling the emergence of developmental errors in variable environments

We turned to computational modeling in order to elucidate the biochemical mechanism

linking gene repression, developmental phenotypes, and metabolism. Because this relationship

appeared relevant to many GRNs during many stages of Drosophila development, we sought

to directly model the emergent properties of these systems rather than the specific regulatory

mechanisms behind them. We therefore explored the mechanism using a general modeling

framework premised on the progressive restriction of cell potential over time. Each step of

restriction corresponds to a change in gene expression; gene products are synthesized, act,

and then are eliminated until they are again needed in other cells (Fig. 4.5A). Temporally

localized expression allows signaling molecules and transcription factors to be repeatedly used
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Figure 4.4. The microRNA family is dispensable when energy metabolism is slowed.
(A) The pupal viability of various dcr-1 nonsense mutants is fully rescued when IPCs are ablated
in the mutants. (B) Adult viability of various ago1 missense and nonsense mutants is rescued
when IPCs are ablated in the mutants. (C) Representative ago1 adults with normal or slowed
metabolism. (D) Genetically mosaic individuals with ago1+ bodies and ago1W894X mutant eyes.
Left, representative individual with normal metabolism has almost no eye tissue (24/24 animals had
this phenotype). Right, representative individual with slowed metabolism has rescued eye tissue.
Of 70 such animals analyzed, 46 had this phenotype, 20 had normal eyes, and 4 had eyes that
resembled the left animal. This is a statistically significant difference (p < 0.0001; Chi square with
Yates correction). Error bars, s.d. ****, p < 0.0001; **, p < 0.01; *, p < 0.05; n.s., p > 0.05

to build different body structures at different times. On the other hand, transient expression

dynamics require GRN components to remain synchronized with the processes they govern.

If they fall out of rhythm, developmental errors occur. We therefore modeled the transient

expression and regulation of a single gene within an intracellular cascade of developmental

gene expression (Fig. 4.5A, red line).

4.4.1. Mathematical model of gene expression

To model the dynamics of gene expression, we defined a linear time invariant system that

describes the time evolution of activated DNA (D), mRNA (R), and protein (P) in response
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Figure 4.5. A dynamic model of gene regulation during cell fate determination. (A) A
program of gene expression occurs as a single cell passes through a series of developmental states.
The model focuses on transient expression of a single gene within a cascade of gene expression. A
state change is defined as the induction of gene expression by upstream gene products (input) and
the action of the gene product (output). (B) Schematic representation of the response to a transient
input, which can be either an extracellular or intracellular signal. Gene expression output is subject
to layers of negative regulation acting at the gene, transcript, and protein levels. (C) Control
representation of a single feedback loop as depicted in B. Boxes contain transfer functions, open
circles indicate summation points, and closed circles indicate exclusive switches for each repressor.
(D) Protein expression may be subject to layers multiple repressors acting in parallel.

to an inductive stimulus (I ). These state variables describe the extent of gene expression at

any point in time. Transitions between each of the variables’ discrete states are governed by

the set of psuedo-elementary reactions listed in Table 4.1.

Table 4.1. Elementary steps of gene expression

Reaction Transition Propensity Param. [min-1]

Gene activation ∆D → ∆D + 1 k1∆I 1
Transcription ∆R→ ∆R+ 1 k2∆D 1
Translation ∆P → ∆P + 1 k3∆R 1
Gene deactivation ∆D → ∆D − 1 γ1∆D 1
Transcript decay ∆R→ ∆R− 1 γ2∆R 10-2

Protein decay ∆P → ∆P − 1 γ3∆P 10-3

GRNs use layers of negative regulation to attenuate expression of target genes (Fig.

4.5B). In our model, a system of regulatory components monitors the relative abundance

of a target protein that dictates a cell fate transition. When the abundance of this protein
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increases, the regulatory components sense the increase in protein levels and act to down-

regulate it, either at the level of gene transcription, mRNA stability, or protein stability

(Fig. 4.5C). The particular mechanisms responsible for implementing regulation may remain

unspecified. Instead, we abstract all modes of regulation using the independent and linear

elementary reactions listed in Table 4.2. Multiple repressors often act in parallel to attenuate

the expression of target genes. These control elements can be thought of as independent

repressors working in parallel to bring the protein level back to a basal steady-state (Fig.

4.5D).

Table 4.2. Elementary steps of gene regulation

Reaction Transition Propensity Param. [min-1]

Transcriptional feedback ∆D → ∆D − 1 η1∆P 5.0× 10−4

Feedback on mRNA ∆R→ ∆R− 1 η2∆P 1.0× 10−4

Feedback on protein ∆P → ∆P − 1 η3∆P 5.0× 10−4

In the continuum limit, this model yields a deterministic system of ordinary first-order

differential equations:

dD

dt
= k1I − γ1D −

N∑
η1P

dR

dt
= k2D − γ2R−

N∑
η2P

dP

dt
= k3R− γ3P −

N∑
η3P

(4.1)

where ki are activation, transcription, or translation rate constants, γi are degradation con-

stants, ηi are feedback strengths, and each species may be subject to N independent repressors.

Equation 4.1 describes the time evolution of transcription rates, transcript abundance, and

protein abundance. When these targets are induced by exogenous stimuli, their timely atten-

uation ensures that protein expression remains transient. The resultant dynamics resemble

a simple pulse response. Our model therefore eschews molecular detail while preserving the
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salient features of gene expression dynamics that are relevant to developmental outcomes.

This coarse-grained modeling strategy emphasizes an empirical view of GRN dynamics, and

facilitates quantitative predictions at the organismal scale.

The model was not designed to capture the specific details of the various GRNs probed

by our experiments. Instead, it provides a platform to survey the general principles that

govern the dynamics of developmental processes. Namely, we developed a model that allowed

us to ask how protein expression dynamics change when repressors are removed. In each

of our model systems, protein expression is transient. Beginning at a basal steady state,

expression is driven by upstream components of the developmental program. The ensuing

expression dynamics can therefore be considered a response to perturbation.

4.4.2. Model relation to control theory

Control theory provides a theoretical foundation underpinning the response of systems dis-

placed from steady state. One of its core principles is the notion of Lyapunov stability; that

is, systems tend to remain near stable equilibria. Another is the Hartman-Grobman theo-

rem, which posits that systems deviate approximately linearly about these fixed points [282].

Models based on these principles seek to describe how system output deviates from its steady

state value in time. Describing our model with control terminology, protein level remains

fixed about a basal steady state. Deviations from the basal level are driven by a transient

disturbance. The disturbance induces activation of a gene, which induces transcription of

mRNAs, which proceed to induce translation of protein. These three state variables are
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linearized about their steady state values:

∆D = D − lim
t→∞

D(t)

∆R = R− lim
t→∞

R(t)

∆P = P − lim
t→∞

P (t)

(4.2)

where the prefix ∆ signifies a deviation variable and the limit denotes the steady state

concentration for a fixed level of the input signal.

Protein levels relax back to steady state as the stimulus subsides. Control theory

offers further insight when the relaxation process is mediated by one or more regulatory

actors. In each of the experimentally surveyed GRNs, regulatory species such as microRNAs

detected an increase in protein levels and acted to attenuate protein expression. These actors

implement feedback control; they sense deviations in system output and exert an opposing

response to drive the system back toward steady state. Neglecting their precise mechanisms

of action, we can capture the influence of these controllers on system output with a single

parameter, the feedback strength ηi for controller i. For simplicity we assume these regulatory

mechanisms provide proportional control, meaning they modulate the deviations defined by

Equation 4.2 with a strength proportional to the output protein level. This proportional

only scheme is incapable of input tracking and could not reject a sustained disturbance [71].

However, proportional only control provides an adequate representation of system dynamics

because our model depicts an intermediate step in a cascade of developmental processes

whose inputs and outputs are inherently localized in space and time (Fig. 4.5A).
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When expressed in the Laplace frequency domain (see [283]), the system is readily

described by three sequential first-order transfer functions:

∆D(s) =
( k1

γ1
1
γ1
s+ 1

)[
∆I(s)−

N∑ η1

k1

∆P (s)
]

∆R(s) =
( k2

γ2
1
γ2
s+ 1

)[
∆D(s)−

N∑ η2

k2

∆P (s)
]

∆P (s) =
( k3

γ3
1
γ3
s+ 1

)[
∆P (s)−

N∑ η3

k3

∆P (s)
]

(4.3)

where the argument s is the complex frequency. Given this formulation, control theory

provides a wealth of insight into the stability and dynamic character of pulsatile protein ex-

pression when the feedback strengths are varied. The transfer functions propagate deviations

in the stimulus level (the input) to deviations in protein level (the output). A signal block

diagram representation reveals that each regulatory process listed in Table 4.2 confers closed-

loop control of protein levels following their induction (Fig. 4.6). The internal dynamics

of this system dictate its sensitivity to perturbation. Restated symbolically, the magnitude

and duration of protein expression are governed by the relative influence of the process and

controller gains, KPi = ki/γi and KCi = ηi/ki. The contributions of each regulatory element

ηi are additive, and may therefore be combined into a single controller gain for each point of

actuation i. This formulation allows us to emulate the loss of a repressor simply by lowering

the relevant controller gain.

Figure 4.6. Block diagram depiction of the mathematical model. Boxes contain transfer
functions relating upstream and downstream variables, open circles indicate summation points.
Transfer functions are expressed in the Laplace frequency domain.
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4.4.3. Simulation of developmental errors due to repressor loss

Protein expression follows a biphasic trajectory after reception of a transient stimulus (Fig.

4.7A,B, left panel). If there were no noise or variability, the protein level would be deter-

ministic over time. However, protein dynamics vary because gene expression is noisy [284],

something that can be captured in the model simulations by incorporating intrinsic noise.

We then devised a scheme to relate protein expression dynamics to the likelihood of

a successful developmental outcome. We define success as the ability of a GRN to attenuate

protein expression in a timely manner, thus keeping pace with parallel components of the

developmental program by triggering subsequent developmental events. We quantified errors

in developmental outcome by defining a threshold that the output protein level must cross

before a subsequent event can be triggered. Protein levels exceeding the threshold constitute

errors in developmental outcome (Fig. 4.7B, right panel). Notably, such errors become more

frequent when one repressor is removed (Fig. 4.7C). This property is observed over a broad

range of parameter values, regardless of the manner in which repressors act, or the value at

which the threshold is established (see Section 4.9).

The modeling framework allowed us to ask whether multiple layers of repression are

less important for developmental outcome when energy metabolism is reduced. To answer this

question, we halved the rate parameters of each ATP-utilizing reaction to reflect conditions of

reduced energy metabolism (see Section B.7). Although ATP content remains fairly constant

in cells facing limited respiration, the fluxes of ATP synthesis and turnover are affected,

manifesting in altered ratios of ATP to ADP and free phosphate [285]. Anabolic processes

such as protein synthesis are highly dependent on the ATP/ADP ratio [286]. When we

halved ATP-dependent rate parameters and compared model results from full versus partial

repression, we observed that error frequency in developmental outcome did not increase when
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a repressor was lost (Fig. 4.7D). This insensitivity to loss of a repressor persisted whether

repression was transcriptional, post-transcriptional, or post-translational. The effect was

observed across a wide range of model parameter values, irrespective of where the threshold

was set, and regardless of whether a basal stimulus was present (see Section 4.9). In many

cases the effect remained modestly apparent when the stimulus duration was extended to

maintain comparable protein levels under conditions of reduced energy metabolism. In

general, our modeling framework suggests that the frequency of developmental errors is less

sensitive to changes in repression when energy metabolism is reduced.

Reduced glucose consumption by cells might not only limit ATP fluxes, but also hinder

the synthesis of nucleotide and amino acid precursors required for RNA and protein synthesis.

To simulate this scenario, we specifically reduced the rate parameters for RNA and protein

production. Constraining these synthesis rates also suppressed the rise in error frequency

when a repressor was lost (Fig. 4.8).

Overall, our modeling framework is fully consistent with our experimental observations

that multiple layers of repression cease to be important for developmental success under

conditions of reduced carbon and energy metabolism. Furthermore, the modeling framework

suggests that the phenotype suppression phenomenon may be driven by differences in protein

expression dynamics that are dependent on metabolic conditions.

4.5. Protein expression dynamics after partial repressor loss

We quantified the extent to which the expression dynamics underlying developmental

events were affected in our model. We first constructed a 98% confidence band around the

set of trajectories simulated with the full complement of repressors (see Section B.6.2). This

confidence band provides lower and upper bounds for the expected protein level. We then

evaluated the fraction of trajectories, E(t), simulated with one repressor missing that fell
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Figure 4.7. Simulated developmental errors are less frequent when metabolism is re-
duced. (A-C) Simulated emergence of developmental errors. (A) A transient input signal drives (B)
pulsatile protein expression dynamics. Simulations may be performed with two post-translational
repressors in place (full repression), or with only one repressor in place (partial repression). Shaded
regions correspond to the 98% confidence band of simulated protein trajectories. We define the
commitment time as the time needed for 99% of simulations with full repression to cross a predefined
threshold. With partial repression, the protein levels take longer to decay, so fewer simulations
cross the threshold within the defined commitment time. We interpret each failure of a simulated
protein level to decay below the threshold in time as a developmental error. (C) Error frequency
is greater with partial repression. (D) The model suggests that errors will occur more frequently
under partial repression regardless of how repressors act on gene expression (left panel). However,
partial repression imparts fewer developmental errors when ATP-dependent parameter values are
reduced by 50% (right panel).

above or below the confidence band at each point in time. Averaging these values across

the time course yields a single metric that reflects the extent to which protein dynamics are

affected by the loss of a repressor:

Protein overexpression ≡ 1

τ

∫ τ

0

E(t)dt (4.4)



107

Figure 4.8. Partial repression imparts few developmental errors when biosynthesis is
reduced. Construction is equivalent to the right panel of Figure 4.7D. However, rather than fully
reduced energy metabolism, only the RNA and protein synthesis rate parameter values were reduced
by 50%.

We evaluated this metric for a scenario in which an auxiliary post-transcriptional repres-

sor, akin to a microRNA, is lost. Using typical metabolic parameters, 78% of trajectories

simulated without the post-transcriptional repressor exceed the confidence band generated

under full repression (Fig. 4.9A). This overexpression effect is highly robust to parameter

variation in the model (see Section 4.9). When ATP-dependent parameters were halved,

only 16% of trajectories exceeded the confidence band (Fig. 4.9B). The strong diminishment

of overexpression under low metabolic conditions was also robust to extensive parameter

variation. These results led us to predict that protein expression dynamics would be much

less sensitive to repressor loss if we reduced metabolic rate.

We experimentally tested these predictions by measuring the expression dynamics of

a key developmental regulatory protein, Yan. As shown in Chapter 3, Yan exhibits pulsatile

dynamics in the larval eye disc, where its expression is induced by a morphogenetic furrow

that traverses the eye disc. Eye disc cells located in the morphogenetic furrow rapidly

upregulate Yan protein abundance, as quantified by a YFP-tagged version [43]. Yan levels

then gradually decay back to initial conditions within these cells, thus exhibiting pulsatile

dynamics. We compared Yan-YFP dynamics in eye disc cells from normally metabolizing
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larvae and larvae with ablated IPCs (Fig. 4.9C,D). The same pulsatile dynamics were

observed in both, but the amplitude of the pulse was slightly reduced and the duration was

extended when metabolism was slower. Similar trends were predicted in silico (Fig. 4.9A,B).

Figure 4.9. Expression dynamics are resistant to repressor loss when energy metabo-
lism is reduced. (A,B) Simulated expression of target protein output when it is under control of
an auxiliary post-transcriptional repressor (green) or not under control of the repressor (orange).
All simulations (green and orange) are also under control of a constitutive repressor. Shown are ten
randomly-chosen samples from a total population of 5000 trajectories for each condition. (A) Simu-
lations performed with normal ATP-dependent reaction rates. (B) Simulations performed following
a 50% reduction in the rate of ATP-dependent reactions. (C,D) Yan-YFP protein dynamics in eye
disc progenitor cells. Time 0 marks the time at which Yan-YFP induction occurs. Solid lines are
moving line averages. Shaded regions denote 95% confidence intervals. Each line average is calcu-
lated from a composite of measurements of between 4,379 and 6,716 cells. (C) Yan-YFP dynamics
for wildtype Y an-Y FP and mutant Y an∆miR-7-Y FP eyes under normal metabolic conditions. (D)
Yan-YFP dynamics for wildtype and mutant genes when the IPCs have been ablated.

In the eye disc, Yan expression is repressed by the microRNA miR-7 [16]. There

are four binding sites for miR-7 in the 3’UTR of yan mRNA, and their mutation causes

de-repression of Yan output. We eliminated miR-7 repression of Yan-YFP by mutating the

four binding sites in the 3’UTR of Yan-YFP mRNA to make Y an∆miR-7-Y FP . In normally

metabolizing eye discs, Yan-YFP protein made from the mutated gene pulsed with greater

amplitude and showed impaired decay when compared to Yan-YFP made from the wildtype

gene (Fig. 4.9C). These dynamics recapitulate the effect of repressor loss predicted by our
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model (Fig. 4.9A). In contrast, Yan-YFP made from the mutated gene showed similar

dynamics to protein made from the wildtype gene when metabolism was slowed (Fig. 4.9D).

This behavior clearly resembled the simulated dynamics under conditions of reduced energy

metabolism (Fig. 4.9B).

These measurements demonstrate that miR-7 has little to no impact on Yan expression

dynamics when metabolism is slowed, and are consistent with the observed suppression of

developmental errors when the same repressor is lost in the eye. The breadth of our model

predictions further suggests that these effects are generalizable to other genes and repressors.

4.6. Effect of full repression loss

Our modeling framework is consistent with the hypothesis that multiple weak re-

pressors allow GRN dynamics to faithfully couple to variable energy metabolism, with fewer

repressors required when metabolic conditions are reduced. We then asked whether repression

is needed at all under such conditions. We studied a model with a full complement of negative

control elements and compared the results to a scenario in which all control elements were

removed (Fig. 4.10A). Error frequencies approached 100% under normal growth conditions.

While expression dynamics were visibly less affected by repressor loss when ATP-dependent

parameters were reduced, the error frequency remained very high (Fig. 4.10B). These results

suggest that there are limits to the severity of perturbations for which reductions in energy

metabolism can compensate, and reducing energy metabolism does not eliminate the need

for gene repression altogether.

To test this prediction, we expressed in the eye a yan mutant transgene that is

insensitive to all known repression of yan transcription, mRNA stability and protein stability

[82]. The Y anACT mutant adults had severely disrupted compound eye patterning (Fig.

4.10C). This mutant eye phenotype was not suppressed by ablation of the animals’ IPC
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cells. Wildtype yan transgenic adults with normal eye patterning were also unaffected by

IPC ablation (Fig. 4.10D).

Figure 4.10. Reduced energy metabolism cannot compensate for complete loss of re-
pression. (A,B) Simulated expression of protein output both with (purple) and without (grey) any
repression of the target gene. Shown are ten randomly chosen samples from a total population of
5000 trajectories for each condition. Error frequencies exceed 99% irrespective of metabolic condi-
tions. (A) Simulations performed under normal conditions. (B) Simulations performed following a
50% reduction in the rate of ATP-dependent reactions. (C) Loss of eye tissue in a yanACT mutant
is not suppressed by slower metabolism. Representative individuals were taken from N > 100
individuals for each condition. (D) Eye patterning in a yanWT control is not affected by slower
metabolism. Representative individuals were taken from N > 100 individuals for each condition.

4.7. Limiting protein synthesis reduces the need for repressors

The coupling of developmental dynamics to time can be explored with other aspects of

metabolism. In particular, protein synthesis is an important determinant of rates of growth

and development [287]. We used our modeling framework to investigate the impact of a

twofold reduction in overall protein synthesis rate on GRN dynamics. The model suggests

that expression dynamics are less affected and fewer developmental errors are incurred by

loss of a repressor when protein synthesis rates are reduced (Fig. 4.11). We again found this

effect is robust to a wide range of parameter values and model assumptions (see Section 4.9).

We tested this model prediction by genetically reducing the abundance of cytoribo-

somes in all cells in Drosophila. We made use of loss-of-function mutations in genes encoding
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Figure 4.11. Simulated developmental errors are less frequent when protein synthesis
is reduced. The model predicts increased frequency of error with partial repression regardless of
how auxiliary repressors act on gene expression (left panel is copied from 4.7D). However, partial
repression induces fewer errors when protein synthesis-dependent parameter values are reduced by
50% (right panel).

various ribosomal proteins (RPs), which cause the “Minute” syndrome of dominant, haploin-

sufficient phenotypes, including slower growth and development [288, 289]. Heterozygous RP

mutants reduce the number of ribosomes per cell by approximately 50%, and a total of 64

RP genes exhibit a Minute syndrome when mutated. We selected a subset of these genes to

reduce ribosome number.

We combined heterozygous RP mutants with the repressor mutations we had previ-

ously studied. In all cases, the RP mutants suppressed the developmental phenotypes of

mutations in wg, miR-7, sev, hairy, and miR-9a (Fig. 4.12). This error frequency suppression

was precisely the result predicted by our modeling.

We also tested whether expression dynamics are affected by repressor loss under

limiting translation conditions. The Sens protein is transiently expressed in proneural cells

during selection of sensory bristle fates in the imaginal wing disc [290]. Bordering the

presumptive wing margin, stripes of proneural cells express Sens protein over a spectrum

of levels, reflecting heterogeneity in Wg and Notch regulation of its expression [273, 291].

Moreover, miR-9a weakly represses sens expression in these cells [276]. We recombineered a
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Figure 4.12. Reducing ribosome number rescues sensory organ development when
repressors are lost. (A) Loss of miR-7 does not cause adult eye mispatterning when RpS3 is
heterozygous mutant. (B) sev mutants have more R7-positive ommatidia when either RpS3 or
RpS13 are heterozygous mutant. Each datapoint represents one eye sample, and between 481 and
837 ommatidia were scored for R7 cells within each eye sample. (C) wgSp1 heterozygous individuals
that are also heterozygous mutant for different RpS genes have sternopleural bristle numbers more
similar to wildtype. (D) Developmental accuracy is recovered for both miR-9a and hairy mutants
that are also heterozygous mutant for RpS13. For all panels in B-E, error bars, s.d. ****, p < 0.0001;
***, p < 0.001; n.s., p > 0.05.

19 kb sens transgene, amino-terminally tagged with superfold GFP (sfGFP), that functionally

replaced the endogenous sens gene [94, 292]. Quantitative measurement of sfGFP fluorescence

in individual proneural cells yielded the expected distribution of sens expression (Fig. 4.13A).

We compared this distribution to one derived from individuals expressing a mutated sfGFP-

sens transgene in which its miR-9a binding sites had been mutated [94]. Mutation of the

miR-9a binding sites in sfGFP-sens shifted the fluorescence distribution, and resulted in an

average 1.45-fold increase in sfGFP-Sens levels (Fig. 4.13B). We then tested the effects of miR-

9a on sfGFP-sens expression when the RpS13 gene was heterozygous mutant. Strikingly, loss

of miR-9a regulation had less effect on sfGFP-Sens protein levels when ribosome numbers
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were reduced (Fig. 4.13B). This behavior clearly resembled the effect predicted by the

modeling framework.

Figure 4.13. Reducing ribosome number diminishes sfGFP-sens overexpression when
miR-9a repression is lost. (A) Frequency distribution of sfGFP-Sens protein level in cells border-
ing the wing margin of white prepupal wing discs. Shown are distributions of cells expressing either
wildtype sfGFP-sens or sfGFP-sens in which miR-9a binding sites have been mutated. Each group
represents > 15,000 cells. (B) sfGFP-sens overexpression caused by miR-9a binding site mutations
in RpS13 wildtype (green) and heterozygous mutant backgrounds (violet). Left panel shows median
fold-change. Right panel shows the shift in the fluorescence distribution of sfGFP-Sens-positive
cells as determined by a Mann-Whitney-Wilcoxon test. Error bars denote 95% confidence intervals.
Overexpression is attenuated in the RpS13 heterozygous mutant background.

4.8. Implications for the evolution of GRNs

Growth and development are fueled by metabolism. This means that the tempo of de-

velopment depends on metabolic rate. Thus, the dynamics of developmental gene expression

must faithfully adjust to a variable time scale. We have shown that multi-layered weak repres-

sion within GRNs plays an unexpected function in synchronizing gene expression dynamics

with the variable pace of the developmental program. Multiple repressors are required for

accelerated development when metabolism is high, and they become functionally redundant

when metabolism is low. Multiple repressors therefore allow for reliable development across

a broader range of metabolic conditions than would otherwise be tolerated.

Our model explains long-standing observations linking nutrient limitation to suppres-

sion of mutant phenotypes [266, 267]. Presumably, such mutations cripple regulatory genes

acting on developmental GRNs. Our model might also offer an explanation as to why animals
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that undergo above-normal growth exhibit compromised development [246, 248]. Wildtype

GRNs might function across a limited range of metabolism, with functionality breaking down

when metabolism exceeds that range.

Our varied analyses suggest that this relationship between metabolism and repression

is ubiquitous. We found that the entire family of 466 microRNAs in Drosophila melanogaster

can become functionally dispensable when energy metabolism is slowed. The extensive

literature on microRNA function in Drosophila implicates them in practically all facets of

the fruit fly’s life [293, 294]. Various explanations have been provided for why this family of

weak repressors has flourished in the animal kingdom, chief among them the idea that they

act as buffers for gene expression [96]. We now posit that microRNAs also provide broad

and flexible coupling of many developmental processes to variable timescales resulting from

fluctuations in metabolism.

There is an alternative mechanism to explain phenotype suppression by reduced

metabolism. This mechanism relies on a steady-state and not dynamical perspective of gene

expression. Genome-wide gene expression patterns could conceivably change with organismal

growth rate. This is the case for chemostat-grown yeast cells, where the expression of 27%

of all genes correlates with growth rate [295]. Most genes associated with stress response are

overexpressed when cells grow at a slow rate [295, 296]. Such differential gene expression

could globally modulate dynamical processes such as protein folding and turnover, among

others, and thereby attenuate phenotypes of genetic mutations. Abundance of molecular

chaperones has been found to affect the penetrance of diverse gene mutations in C. elegans

and Drosophila [104, 297]. However, these global effects do not explain why gene expression

dynamics are conditionally dependent upon mutations in regulatory genes. We found that

repression of Yan and Sens dynamics by microRNAs become more redundant when metabolic

rates are slowed.
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Metabolic rate increases exponentially with temperature as described by the Arrhe-

nius equation [245], resulting in an indirect temperature dependence of developmental tempo

[258]. Temperature also directly affects the rates of reactions within developmental GRNs

[245], yet developmental outcomes are generally robust to fluctuations in temperature across

a limited range. Various molecular mechanisms have been invoked to explain this robust-

ness. These include chaperones that create large protein-folding reservoirs [104, 298], and

regulatory circuits within interaction networks [95]. Our model suggests a complementary

mechanism for developmental robustness against temperature variation. By coupling gene

expression dynamics with metabolism, weak repressors might neutralize the metabolic effects

of temperature on developmental tempo. Indeed, loss of miR-9a regulation is less impactful

on sensory organ development if the growth temperature is lowered [94]. Likewise, raising

animals under lowered temperatures can suppress the phenotypes of mutations that are not

classical ts alleles [269–272].

Metabolic conditions drive variation about the intrinsic developmental tempo of each

species. We have shown that layered weak repression within GRNs enables these fluctuations

to occur without causing developmental errors. Metabolic conditions change in both space and

time. Perhaps the selective advantage of a reliable developmental outcome amidst variable

environmental conditions is a driving force in the evolution of gene regulatory networks.

4.9. Robustness of modeling results

We conducted numerous parameter sweeps to confirm the robustness of each result

presented in this chapter. In each sweep, all model parameters were varied across a ten-fold

range (± ∼three-fold). To efficiently sample the parameter space, we quasi-randomly sampled

2500 parameter sets from the multi-dimensional hyperspace defined by one order of magnitude
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variation in each of the model parameters. For each parameter set we independently ran six

sets of five thousand simulations:

(1) Full feedback with normal metabolism and translation

(2) Partial feedback with normal metabolism and translation

(3) Full feedback with reduced energy metabolism

(4) Partial feedback with reduced energy metabolism

(5) Full feedback with reduced protein synthesis

(6) Partial feedback with reduced protein synthesis

Full-repression systems were assigned two copies of each feedback element present in the corre-

sponding partial-repression system. Error frequencies were evaluated as described previously.

In total, this procedure constitutes one parameter sweep.

Our parameter sweeps sampled an N-dimensional space, prompting us to seek a lower

dimensional representation in order to visualize and discern any characteristic trends. One

option is to project the results of all simulations onto each of the N(N − 1)/2 orthogonal 2-D

planes. Figure 4.14A demonstrates this approach for error frequencies simulated with partial

feedback and normal metabolism. While it clearly shows that error frequency is greater

than 1% for most combinations of parameter values (lots of dark spots), we find that the

complexity of the 2-D visualization offers little additional insight. Instead, for all remaining

parameter sweeps we opt for the simpler one dimensional projection of parameter sweep

results, as illustrated by Figure 4.14B. The histogram simply conveys the global trend in

simulated error frequency, which in this case is skewed heavily toward large error frequencies,

indicating that partial loss of repression induces an increase in error frequency across a broad

parameter range.



117

Figure 4.14. Error frequencies are broadly increased when an auxiliary repressor is
lost. (A) Simulated error frequencies are projected onto two dimensional planes and then linearly
interpolated onto (100 px)2 grids. (B) Binned counts of the 2500 simulated error frequencies depicted
in A. The majority of parameter sets yield high error frequencies.

We also varied the level of the success threshold, and recalculated all error frequencies

accordingly. Error frequency is greater than 1% for almost all definitions of the success

threshold, indicating that loss of a repressor increases developmental error irrespective of

where the success threshold is set (Fig. 4.15).

We also surveyed how error frequency changes when metabolism is reduced. For

the control theoretic model, error frequencies simulated across the parameter space were

heavily skewed toward lower values (Fig. 4.16A). For each parameter set, we then computed

the difference in simulated error frequency between conditions of normal and reduced energy

metabolism. The one-dimensional representation clearly shows that simulated error frequency

decreases when metabolism is reduced for the vast majority of the sampled parameter space
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Figure 4.15. Error frequencies increase when a repressor is lost irrespective of where
the success threshold is set. Error frequencies for parameter sets from Fig. 4.14 were re-calculated
across a range of different success thresholds. Thresholds are defined by the 99th percentile of protein
levels simulated with all repressors, and are evaluated at the time when the mean protein level with
all repressors reaches the indicated fraction of its maximum value. Each line represents one of the
parameter sets from Figure 4.14. Color scale reflects maximum difference in error frequency across
the range of thresholds tested.

(Fig. 4.16B). Similarly, simulated error frequency decreases when metabolism is reduced

regardless of where the threshold is set (Fig. 4.16C).

Our conclusion also persists when a nonzero basal stimulus is introduced. We con-

ducted an additional parameter sweep in which the stimulus consists of a transient step

change between input values of ∆I = 0.1 and ∆I = 1.0. Simulations were carried out on an

absolute basis, and were allowed sufficient time to reach a non-zero steady state before and

after the stimulus was applied. The resultant protein level trajectories for each of the six sets

of simulations were converted to deviation form by subtracting the respective population-wide

mean final value. Error frequencies were then evaluated as previously described. Despite the

inclusion of a nonzero basal stimulus, error frequencies remained broadly suppressed under

conditions of reduced energy metabolism (Fig. 4.16C).

All preceding simulations assume the stimulus (input) is a unit step that persists for

three hours regardless of metabolic conditions. Alternatively, metabolic conditions might

affect stimulus (input) duration, particularly if the upstream processes responsible for the

input are also governed by metabolically delayed processes. We find that the general predic-

tion made by our model – that reduced energy metabolism and reduced protein synthesis

limit sensitivity to loss of regulation – persists in roughly half of cases if we apply a four-fold
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Figure 4.16. Reduced energy metabolism diminishes the importance of auxiliary re-
pressors over a wide range of model conditions. Each panel depicts a parameter sweep of
the nine-dimensional hyperspace defined by one order of magnitude variation in each of the default
model parameters. For each parameter set, error frequencies pertain to 50% loss of repression. (A)
Distribution of error frequencies for all parameter sets under conditions of reduced energy metabo-
lism. (B) Distribution of differential error frequencies relative to normal metabolic conditions, e.g.
blue indicates error suppression by reduced energy metabolism. (C) Results from (B) re-calculated
across a range of different success thresholds. Each line corresponds to a single parameter set.
Color scale reflects maximum change in error frequency across the threshold range. Black dashed
line denotes the absence of a rescue effect. Most simulations exhibit some reduction in error fre-
quency across all thresholds. (D-G) Distributions of differential error frequencies relative to normal
metabolic conditions when (D) a nonzero basal stimulus is applied, (E) input duration is increased
four-fold by a reduction in energy metabolism, (F) an upper bound is placed on the number of
sites firing transcription, and (G) cooperative transcription kinetics are considered. Blue-Red color
scale corresponds to the difference in error frequency between slow and normal conditions, e.g. blue
indicates error suppression by reduced energy metabolism.

extension of input duration when energy metabolism is reduced (Fig. 4.16E). Notably, in

many cases scaling the input duration with metabolic condition yields the opposite effect.

However, these instances correspond to simulations in which the extended stimulus yields
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output protein levels greater than those observed under normal metabolic conditions, sug-

gesting that a four-fold increase in stimulus duration may be excessive. Nevertheless, we take

this to be an upper bound on the observed phenotype suppression phenomenon.

Our control theoretic modeling framework suffers two notable limitations. First, the

number of transcriptionally active sites within a cell is limited by gene copy number, but

the activated-DNA state in our initial linear model was unbounded. To test whether error

frequency suppression persists when an upper bound on gene activity is introduced, we

considered a simple two-state transcription model:

dGon

dt
= kGGoffI − γGGon −

Ng∑
ηGGonP

dGoff

dt
= −dGon

dt

dR

dt
= kRGon − γRR−

Nr∑
ηRP

dP

dt
= kPR− γPP −

Np∑
ηPP

(4.5)

where Gon and Goff are the on- and off- states of a gene; I, R, and P are the input, transcript,

and protein levels; ki, γi, and ηi are the synthesis, decay, and feedback rate constants for

species i; and Ng, Nr, and Np are the number of transcriptional, post-transcriptional, and

post-translational repressors, respectively. We performed another parameter sweep varying

each of the model’s nine parameters across one order of magnitude. All simulations were

initialized as diploid (Goff = 2) then subject to a constant 3 h stimulus before reverting to

a basal level of zero gene expression. Despite the limitation placed on gene activity, error

frequency remained elevated under normal growth conditions and broadly suppressed when

ATP-dependent rate parameters were reduced (Fig. 4.16F).

Second, gene expression models frequently utilize cooperative kinetics in order to

reproduce the nonlinearities and thresholds encountered in transcriptional regulation. We
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captured these dynamics by reformulating our model in terms of Hill kinetics:

dR

dt
=

kR
1 + ( 1

2I
)H

Ng∏[
1

1 + ( P
Kr

)Hr

]
− γRR−

Nr∑
ηRP

dP

dt
= kPR− γPP −

Np∑
ηPP

(4.6)

where I, R, and P are the input, transcript, and protein levels; ki, γi, and ηi are the

synthesis, decay, and linear feedback rate constants for species i; Nr and Np are the number

of post-transcriptional, and post-translational linear repressors; H is a transcriptional Hill

coefficient; and Kr and Hr are the half-maximal occupancy level and Hill coefficient of

each of the Ng transcriptional repressors. The stimulus level corresponding to half-maximal

transcription rate was fixed at 0.5 because we only consider a binary input signal. Despite

the incorporation of cooperative kinetics, error frequencies remained elevated under normal

conditions and broadly suppressed when ATP-dependent rate parameters are reduced (Fig.

4.16G).

Our simulations revealed that protein expression is less sensitive to repressor loss when

metabolic conditions are reduced (Fig. B.2). We computed the same protein overexpression

metric for each set of simulations in our parameter sweep (Fig. B.2). Under normal metabolic

conditions, we find that protein levels generally increase when a repressor is lost (Fig. 4.17A),

but this effect is broadly diminished when metabolism is reduced (Fig. 4.17B).

Finally, we repeated all of the above robustness checks for the scenario in which protein

synthesis rates are reduced 4.18C). The results persist in all cases, leading us to conclude

that there is a general trend of decreased error frequency with partial feedback under both

reduced energy metabolism and reduced protein synthesis conditions.
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Figure 4.17. Reductions in energy metabolism limit the extent to which protein ex-
pression dynamics are affected by loss of a repressor. (A) Percent overexpression caused by
loss of a repressor for model simulations performed with 2500 independent parameter sets. Color
scale reflects the strength of overexpression. Overexpression is large for most parameter sets. (B)
Percent overexpression caused by loss of a repressor was calculated for simulations implementing
normal energy metabolism and reduced energy metabolism. The difference in percent overexpres-
sion between the two metabolic conditions is shown for model simulations performed with 2500
independent parameter sets. Color scale reflects the difference. The majority of simulations are blue,
indicating that expression dynamics are less affected by repressor loss when energy metabolism is
low.
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Figure 4.18. Reduced protein synthesis capacity diminishes the importance of auxil-
iary repression over a wide range of model conditions. Each panel depicts a parameter
sweep of the nine-dimensional hyperspace defined by one order of magnitude variation in each of
the default model parameters. For each parameter set, error frequencies pertain to 50% loss of
repression. (A-C) Simulations in which the duration of the stimulus is unaffected by changes in
protein synthesis. Shown are the (A) differential error frequencies and (B) differential changes in
expression dynamics relative to normal protein synthesis conditions. (C) Differential error frequen-
cies for varying definitions of the success threshold. Each line represents one parameter set, colored
by the corresponding range of differential error frequencies. (D) Simulations where a nonzero basal
stimulus is applied. (E) Simulations where input duration is increased two-fold by a reduction in
protein synthesis capacity. (F) Simulations when an upper bound is placed on the number of sites
firing transcription. (G) Simulations when cooperative transcription kinetics are considered.



124

CHAPTER 5

Conclusions

The preceding chapters are unified by their pursuit of a common question: how do

the structure and function of gene regulatory networks control cell fate decisions and yield

emergent properties at the organismal scale? Each chapter combined quantitative data and

mathematical analysis to address subtle aspects of this question in a unique way. The

following sections provide an introspective summary of how each chapters findings, and the

lessons learned therein, impact the present understanding and future research directions of

quantitative, developmental, and systems biology.

5.1. Implications for developmental and systems biology

Chapter 2 introduced a computational framework for automated analysis of genetic

mosaics; a class of experiments commonly used to probe cell fate decisions in situ [19, 135].

The framework combines computer vision and statistics to automate the labor-intensive steps

of a quantitative work-flow, enabling automated and systematic comparison of cells subject

to control and perturbation conditions in an otherwise equivalent background.

Quantitative mosaic analysis is not new, nor is it uncommon in high profile publications

[35, 136, 139]. Yet, these studies deploy an irreproducible mix of ad hoc implementations and

costly commercial software. Worse still, qualitative analysis pervades less prominent corners

of the literature. Contributing a fully automated framework to the open-source ecosystem

will make quantitative mosaic analysis equally accessible to the entire community. A unified

framework will also dramatically simplify the reproduction of existing analyses. Chapter 2
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therefore advances the quantification of developmental biology by adding potential for rigor

and reproducibility where they are currently lacking.

Chapter 3 explored a novel cell fate decision mechanism underlying photoreceptor

specification in the Drosophila larval eye. Computer vision techniques were used to extract

quantitative measurements of Pnt and Yan dynamics from a wealth of confocal microscopy

data. Statistical analysis revealed that differentiation is driven by dynamic changes in the

ratio between Pnt and Yan, and is agnostic to changes in their absolute concentrations as

long as the ratio remains constant. The data therefore provide the first direct evidence

that cell fate decisions can be triggered by changes in the relative abundance of separate

transcription factors. This finding rebukes the canonical model of photoreceptor specification

[83]. More importantly, it adds a new dimension to our understanding of how multiple

transcription factors cooperatively control cell fate decisions, with broad implications for

many developmental contexts within and beyond Drosophila.

The ratiometric sensing mechanism identified in Chapter 3 adds to a growing body of

evidence that cells are able to sense relative changes in the abundance of GRN components [50,

187]. These discoveries are exciting because relative sensing could potentially isolate cell fate

decisions from environmental sources of variation. This is because environmental fluctuations

would likely manifest as correlated extrinsic noise that affects all GRN components in a similar

manner, causing absolute but not relative concentrations to vary between cells. Relative

sensing might then increase fitness in variable environments.

Regulatory interactions may provide additional layers of stability. Dual-reporter ex-

periments have shown that regulation buffers cell-by-cell differences in yeast gene expression

to enhance the precision of decisions to commit to a mating response phenotype [42]. Indeed,
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Chapter 4 also showed that the microRNA miR-7 buffers Yan expression levels, and by exten-

sion R cell fate decisions, against varying biosynthesis capacity. Perhaps future experiments

could address how Pnt levels are affected before and after IPC ablation in yan∆miR-7 mutants.

These observations reflect a central theme of this dissertation; the structure and func-

tion of developmental GRNs dictate the robustness of cell fate decisions to environmental

variation. Chapter 4 directly embraced this sentiment. It proposed a new theory to explain

why the regulatory networks that coordinate cell fate decisions often contain many seemingly

redundant repressors acting upon the same target genes. The theory posits that auxiliary

negative regulators mitigate erroneous cell fate decisions when cells are rapidly metabolizing,

and implies that auxiliary repressors may help GRNs adapt their behavior to environmen-

tally driven variation in cell metabolism. The theory is supported by a diverse collection of

experiments in which repressor loss-of-function phenotypes were reversed when biosynthesis

rates were slowed. A quantitative modeling framework was used to explore the mechanistic

origin of this effect, and theoretically demonstrated that auxiliary repressors could avert erro-

neous decisions by expanding cells capacity to buffer excess protein expression. Quantitative

measurements of transcription factor activity confirmed the hypothesized mechanism in vivo.

Chapter 1 introduced the idea that developmental GRNs guide organisms through a

tortuous journey from embryo to adulthood. The journey is not a sprint. Rather, cells must

carefully navigate the many twists and turns of developmental programs; rapidly synthesizing

GRN components when and where they are needed, then degrading them with equal urgency.

Protein synthesis and degradation machineries supply the engine and brakes needed to

negotiate these obstacles (Fig. 5.1A). Individuals stand to benefit from completing the

journey quickly because they are generally vulnerable until adulthood, with little means to

defend themselves against predation and other dangers. They could näıvely swap out the

engine for something more potent, but adding power escalates risk, particularly around sharp
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corners (Fig. 5.1B). Simultaneously upgrading the brakes is a winning strategy (Fig. 5.1C).

Analogously, evolution could accelerate development by expanding biosynthesis capacity.

The resultant boost in protein expression would strain each cell’s ability to localize distinct

GRN activities in time, causing increased risk of erroneous fate decisions that lead to the

emergence of deleterious phenotypes. However, by selecting for auxiliary repressors, cells

could tolerate faster biosynthesis rates without compromising the quality of fate decisions.

The data presented in Chapter 4 confirm this hypothesis by illustrating the inverse perspective.

Repressors were shown to be dispensable when metabolism was slow, much in the way that

brakes aren’t needed to round corners at low speed.

Figure 5.1. The race from embryo to adulthood. Individuals must navigate the many twists
and turns of the developmental program to reach the finish line. (A) Slow and steady loses the
race. (B) Adding power improves acceleration, but increases the risk of failure. (C) Adding power
along with better brakes is a winning strategy. The analogous experimental conditions are (A) slow
metabolism without auxiliary repression, (B) fast metabolism without auxiliary repression, and (C)
fast metabolism with auxiliary repression. This configuration is equivalent to wildtype, suggesting
it consistently wins the race.

This line of reasoning implies that a novel evolutionary driving force may shape

the structure and function of developmental gene regulatory networks. Shorter generational

times confer a selective advantage beyond reducing individuals exposure during infancy. They

facilitate rapid exploration of the phenotypic landscape, enabling fast adaptation to variable
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environments. GRNs should therefore be expected to incorporate any topological features that

allow development to proceed more quickly. The abundance of seemingly redundant regulation

found in developmental GRNs certainly appears to support this hypothesis, and thus reinforce

our contemporary understanding that robustness is a fundamental organizational principle

underlying the evolution of biological systems [109, 110].

The findings also contribute to an emerging view that cells capacity to rapidly adjust

protein homeostasis directly affects organismal fitness and health [299–301]. The assertion

is backed by convincing experimental evidence. Burnaevskiy et al. used a dual-reporter

scheme in C. elegans to show that cellular differences in the abundance of protein synthesis

machinery manifest in the population-wide penetrance of adult phenotypes. The authors went

on to speculate that longevity might be similarly be affected [301]. Tollerson et al. showed

that Elongation factor P alleviates a translational bottleneck caused by ribosomal queuing

in E. coli, facilitating adaption to environmentally-driven increases in cell metabolism [300].

Chapter 4 contributes unique evidence that the accuracy of cell fate decisions depends upon

cells ability to dynamically balance the push and pull of protein synthesis and degradation.

Organismal fitness and health are therefore contingent upon maintaining synchrony between

these two orthogonal forces (Fig. 5.2).

5.2. Avenues for further exploration

This dissertation prompts several exciting new directions for future research. This

section begins with a survey of those that merit further attention, before elaborating on some

preliminary analyses to guide prospective efforts.

Chapter 3 proposed that R cell fate commitment in the larval eye is driven by dynamic

changes in the relative abundance of Pnt and Yan. Experimental evidence was limited to
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Figure 5.2. Cell decisions demand synchrony between GRNs and metabolism.

correlative observations because intrinsic regulation precluded direct manipulation of the Pnt-

to-Yan ratio by varying gene dosage. Future studies could rigorously confirm the hypothesis

by applying the same gene dosage perturbations in a genetic background that lacks the

complete set of regulatory interactions needed to stabilize the Pnt-to-Yan ratio. Disrupting

the ratio control mechanism would first require characterizing its biomolecular implementation.

Computational simulations could explore the space of plausible GRN topologies, then leverage

insight derived from existing experimental data to distill a manageable number of options

for experimental validation. Establishing an unambiguous picture of R cell fate commitment

might then allow for a complete model of retinal patterning dynamics, as is an ongoing

mission among computational biologists [35, 78].

Chapter 3 used an equilibrium modeling framework to explore the effect of cis-

regulatory interactions between Yan monomers on the equilibrium binding occupancy of

promoters regulated by Pnt and Yan. The approach was inspired by the work of Hope et al.,

who used an equivalent model, limited to a single binding component, to explore how the cis-

regulatory syntax of target genes modulates transcriptional output [220]. The multi-species

implementation introduced in Chapter 3 was comparatively underutilized. Future studies
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could ask many questions related to how cis-regulatory syntax modulates the transcriptional

output of genes regulated by two or more polymerizing transcription factors. How do the

number and arrangement of individual binding sites modulate transcriptional output? What

about the spacing or distribution of high and low affinity sites? What if anti-cooperative

or steric interactions are included? Does the number of unique binding species matter? All

of these questions could readily be explored using the open-source platform developed to

support this dissertation (see Appendix 5.4).

The theory developed in Chapter 4 posits that auxiliary repressors stabilize cell fate

decisions against environmental variation in cells capacity to synthesize and degrade proteins.

This assertion was backed by both experiments and computational analysis showing that

repressors were dispensable when either ATP turnover or translation capacity were reduced.

It is well known that many mutant phenotypes are also suppressed in animals raised at

low temperatures. Future studies could ask whether reduced temperature imparts similar

effects on the GRN dynamics that govern cell fate decisions. From a modeling perspective,

the primary challenge would be deciding precisely how to incorporate the relative effects of

temperature on the protein synthesis and degradation machineries. The analogous decisions

were comparatively obvious for ILP2-GAL4 UAS-Rpr and RP mutants, in which protein

synthesis is disproportionately affected. In principle, experimental efforts to quantify the

dependence of protein synthesis and degradation rates on temperature could prove fruitful.

Alternatively, researchers could computationally survey the landscape of plausible

relationships between proteostasis and the environment to identify conditions under which

auxiliary repressors are dispensable. For instance, consider the simplest possible model of

protein expression dynamics (Fig. 5.3A):

dP

dt
= kI − γP (5.1)
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where P and I are the protein and stimulus levels, and k and γ are the synthesis and

degradation rate parameters. Repressors may be implemented as proportional feedback, as

they were in Chapter 4:

dP

dt
= kI − γP − ηP (5.2)

where η is the feedback strength. The frequency of developmental errors induced by losing the

repressor is readily evaluated using the same procedure described in Chapter 4 (Fig. 5.3B).

Rather than hard-coding an explicit dependence of k, γ, and η on environmental conditions,

each parameter can be scaled by a latent dimension λ that reflects the environmental state

of the cell:

k ∝ λνk

γ ∝ λνγ

η ∝ λνη

(5.3)

where νk, νγ , and νη define the respective sensitivities of synthesis, degradation, and feedback

strength to environmental conditions. Consider an example in which the environmental state

of the cell is halved relative to some reference condition, i.e. λ = λ0/2. For νi∈k,γ,η = 1,

parameter i is also halved. If 0 < νi < 1 or νi > 1, parameter i exhibits sub- or super-linear

dependence on the environment, respectively. Finally, νi < 0 implies that parameter i should

actually increase when λ is halved.

The robustness checks presented in Section 4.9 surveyed a handful of discrete values for

the model parameters analogous to νk, νγ , and νη. The scaling assumptions used to represent

conditions of reduced energy metabolism throughout Chapter 4 were loosely equivalent to

(νk, νγ, νη) = (1, 0, 2). Applying the same assumptions to the simplified model recapitulates

a core result of Chapter 4; error frequency is dependent upon the environmental state of the

cell (Fig. 5.3C,D).
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Figure 5.3. Simplified framework for modeling the loss of an auxiliary repressor. (A)
Schematic representation of protein expression in response to a transient input. Output is subject
to regulation by a single auxiliary repressor. (B) Simulated emergence of developmental errors.
Simulations may be performed with (purple) or without (grey) the auxiliary repressor. Lines
reflect a random sample of 5000 trajectories. The two sets of trajectories are compared when 99% of
trajectories simulated with the repressor cross a threshold value (dashed line). Without the auxiliary
repressor, very few trajectories successfully cross the threshold. (C) Graphic representation of the
relation between environmental conditions and the rate parameters that dictate protein synthesis,
degradation, and repressor strength. (D) Error frequency is dramatically suppressed by a change in
environmental conditions.

Combined, equations 5.2 and 5.3 facilitate continuous enumeration of the phase dia-

gram spanned by νk, νγ, and νη in order to identify the range of scaling assumptions under

which auxiliary repressors may be dispensable. Performing this exercise revealed that induced

error frequencies are highest when the strength of the removed repressor is more sensitive

to the environment than the intrinsic rate of protein turnover (Fig. 5.4A, region IV). The

same is true of error frequency suppression, indicating that highly sensitive repressors have

the highest propensity to become dispensable (Fig. 5.4B, region IV). This observation is

consistent with intuition, as environmental conditions that limit the influence of a repressor

would also be expected to mitigate the impact of its removal.

This preliminary analysis could guide the design of future experiments that survey

the effects of temperature on mutations that compromise repressor function. For example,

experiments could quantify νk, νγ , and νη for a particular cell-fate determinant by measuring
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steady-state protein levels in both wildtype and repressor loss-of-function mutants across a

range of temperatures. They could then use the model to generate testable predictions for

alternate temperatures.

Figure 5.4. Suppression depends on parameter sensitivity to the environment. Phase
diagrams span a range of protein degradation and repressor strength sensitivities to environmental
conditions. Heatmaps show (A) error frequency induced by the loss of an auxiliary repressor when
λ = λ0 and (B) change in error frequency when λ = λ0/2. All simulations use k = 1, γ = 0.001,
η = 0.001, and λ0 = 1. Dark blue indicates strong error frequency suppression. Red numerals label
quadrants. The example shown in Fig. 5.3 is taken from quadrant IV.

Chapter 4 also raises the question of whether any other features of GRNs are dispens-

able under certain environmental conditions. For instance, how about promoters? Preliminary

analysis may again provide some insight to guide future work. Consider another scenario in

which an auxiliary promoter is added to the simple model given by Equation 5.1:

dP

dt
= kI + kauxI − γP (5.4)

where kaux is the rate constant for synthesis driven by the auxiliary promoter. The relative

influence of the auxiliary promoter is given by its strength relative to the primary promoter, i.e.

log2(kaux/k). The respective sensitivities of both promoters and degradation to environmental
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conditions are again parameterized in terms of λ:

k ∝ λνk

kaux ∝ λνk−aux

γ ∝ λνγ

(5.5)

The simulation procedure described in 4 is readily modified to evaluate the frequency of

developmental errors induced by removing the auxiliary promoter, i.e. by setting kaux = 0.

Intuition suggests promoter loss should cause a decrease in output protein levels. Error

frequency is therefore redefined to reflect the extent to which protein is under-expressed when

the auxiliary promoter is removed. The metric is evaluated by computing the fraction of

trajectories simulated with a single promoter that fail to reach the lower bound of trajecto-

ries simulated with both promoters. Surveying a range of promoter strengths and relative

influences reveals that error frequencies are most severe when strong and influential auxiliary

promoters are removed (Fig. 5.5A). Figure 5.5B shows the subsequent change in error

frequencies when (νk, νk−aux, νγ) = (1, 1, 1) and λ = λ0/2. The phase diagram is punctuated

by a diagonal band in which error frequencies are suppressed. Below this band, suppression

is minimal because the auxiliary promoter is inconsequential to normal protein expression

dynamics (Fig. 5.5A,B, region I). Above it, removing the auxiliary promoter imparts a severe

perturbation that cannot be recovered by the proposed change in environmental conditions

(Fig. 5.5A,B, region II). Similar zones arise when the equivalent procedure is performed

using the model of auxiliary repressor loss defined by equation 5.2 (Fig. 5.6). Here, the

influence of the auxiliary repressor is defined relative to the intrinsic degradation rate, i.e.

log2(η/γ).

The bands observed in Figures 5.5B and 5.6B indicate the existence of a Goldilocks

zone in which perturbations are strong enough to be felt but weak enough to be recoverable. In
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Figure 5.5. Phase diagram of auxiliary promoter loss. Phase diagrams span a range of
auxiliary promoter strengths and influences. Heatmaps show (A) error frequency induced by the
loss of the auxiliary promoter when λ = λ0 and (B) change in error frequency when λ = λ0/2.
All simulations use γ = 0.001 and λ0 = 1. Dark blue indicates strong error frequency suppression.
Perturbations targeting promoters in region I are inconsequential. Those targeting promoters in
region II are too severe to be recovered. Blue band is the Goldilocks zone.

Figure 5.6. Phase diagram of auxiliary repressor loss. Phase diagrams span a range of
auxiliary repressor strengths and influences. Heatmaps show (A) error frequency induced by the
loss of the auxiliary repressor when λ = λ0 and (B) change in error frequency when λ = λ0/2.
All simulations use k = 1 and λ0 = 1. Dark blue indicates strong error frequency suppression.
Perturbations targeting repressors in region I are inconsequential. Those targeting repressors in
region II are too severe to be recovered. Blue band is the Goldilocks zone.

other words, there exists a finite and continuous range of conditions in which error frequencies

can be suppressed by slowing biosynthesis. Given appropriate knowledge of promoter and

repressor strengths, a model could inform the selection of experimental perturbation targets

that fall within the range. Such an approach would also require quantification of νi and λ

for a given model system.

The value of the models defined by equations 5.2 and 5.4 lies in their simplicity. Be-

cause each strictly employs linear kinetics, the stochastic dynamics are analytically tractable
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via a closed system of moment equations [302]. Even the more complex models presented in

Chapter 4 are approximately solvable, courtesy of modern moment closure and finite state

projection techniques [303, 304]. Future theoretical efforts could be directed toward the

development of a complete analytical framework for studying the interplay of GRN dynamics,

cell fate decisions, and the environment. An analytical platform would vastly reduce the

computational burden imposed by the numerical methods used to conduct all of the analysis

presented in this section and throughout Chapter 4. It would also expedite fitting the model

to experimental data in order to generate testable predictions.

5.3. Perspectives for quantitative biology

This dissertation surveyed developmental cell fate decisions through a quantitative

lens. It used numbers and equations to derive a nuanced understanding of processes that are

notoriously difficult to characterize. In many cases, doing so required forcible reconciliation

with time-honored traditions in biological analysis. Two major obstacles encountered along

the way merit further discussion.

First, models should fit the data; not the other way around. While it may be possible

to coax data into a conventional framework, tailoring one appropriate for the task at hand will

generally return more meaningful insight. For this reason, mathematical flexibility was a key

feature of this dissertation. Each chapter leveraged a customized modeling framework to elicit

deeper meaning out of experimental data than would have been possible using conventional

techniques.

Chapter 2 deployed a Bayesian statistical framework to infer cell genotypes from an

image of clonal marker expression. Because only three gene dosages were possible, biological

intuition suggests the framework should have enforced detection of three distinct components
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solely defined by clonal marker expression levels. However, increasing the fluorescence ambi-

guity exponentially increases the number of measurements required to accurately discriminate

the three true distributions. This is because measurement precision has inverse quadratic

dependence on sample size, i.e. σX̄ = σ/
√
N . Biological knowledge was therefore tempered

by the need to find sensible solutions far from the limit of infinite data. The model was

designed to tolerate an arbitrary number of components and to consider spatial context,

which were later aggregated into the three anticipated genotypes. This empirical formulation

buffered uncertainties imparted by expression heterogeneity and imaging noise to improve

overall annotation performance.

Chapter 3 used an equilibrium binding model to explore how cis-regulatory interactions

between Yan monomers bias the transcriptional output of genes simultaneously regulated by

Pnt. Conventional wisdom suggests a competitive binding model using the Hill-Langmuir

equation would be appropriate [305]. Instead, a statistical mechanical approach was adapted

from earlier work by Hope et al. [220]. Contrary to the empirical strategies used in other

chapters, this model substantially increased the resolution of analysis. Doing so provided

detailed mechanistic insight into the intricacies of polymerizing transcription factors, which

would have otherwise been inaccessible (see Fig. 3.8C).

Chapter 4 sought to model the dynamic output of GRNs controlling a broad spectrum

of cell fate decisions. The conventional first step would have been to identify and consolidate

all known regulatory interactions in each system. Such an endeavor was certainly possible for

Yan-mediated control of retinal patterning, as the pertinent interactions have been studied

for decades [27, 82, 85, 95, 223] and in some cases quantified [43]. Chapter 4 instead drew

inspiration from control theory to develop a model strictly concerned with the two salient

features of pulsatile dynamics; the magnitude of induction and timescale of decay. The model

jettisoned the molecular details of protein expression and regulation in each system, instead
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favoring a coarse-grained depiction of output dynamics. The reductionist approach was vital

to simultaneously depicting the behavior of a diverse assortment of cell fate decisions.

Second, the resolution of analysis should match the resolution of the data. Biological

networks are complex, often far more complex than we can intuitively comprehend. Their

emergent behavior arises from the collective interactions of numerous components, many of

which are often unknown. These uncertainties make it particularly dangerous to think of

a GRN as the sum of its parts. Indeed, predictions are all but meaningless when made by

aggregating disparate interactions that were characterized in isolation.

Despite slowly coming under scrutiny, this practice remains tragically common. It

is perhaps most strongly embodied in the abundance of cartoons that purport to depict

systems level-behavior with a compendium of qualitative pairwise regulatory interactions.

Figure 3.15A provides a modest example. This cartoon is harmless in isolation, but problems

arise when researchers ascribe physical meaning to the various displayed interactions. After

all, there is no accepted standard to define what an arrow, or “edge,” means. A single

edge might actually represent an entire sub-network encoding complex nonlinear processes.

Intermediate steps within an edge might even interact with other intermediates in other edges

drawn elsewhere in the diagram. These types of cartoons are thus rife with ambiguity that

hinders the communication of otherwise outstanding research. For instance, a basic attempt

to simulate the system shown in Figure 3.15A will reveal that the illustrated “regulatory

loop” cannot maintain a constant Pnt-to-Yan ratio in response to varying pnt or yan gene

dosage (data not shown). Yet, Figure 3.15A was necessary because these depictions are so

deeply ingrained in the biological literature that the representation in Figure 3.15B would

likely be misconstrued without it.

This ambiguity starkly contrasts the standardized descriptive languages commonly

used in engineering [44]. To be fair, most human-engineered systems do not suffer the same
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extent of uncertainty as their biological counterparts. Notable exceptions arise in electrical,

chemical, and biomolecular engineering. Autonomous vehicles, advanced robotics, process

plants, and synthetic biological circuits must all contend with disturbances whose origin

and character may be unpredictable or unknown. Fortunately, a viable solution to this

challenge already exists. Control theory emphasizes an empirical representation of systems-

level dynamics that is easily matched to the resolution of available information [283]. In many

cases, the specific details of a system’s internal dynamics may remain unknown. Sensors

need only monitor the minimum set of variables necessary to ensure that a given process is

controllable. Often, this simply entails monitoring systems-level output and taking corrective

action when it deviates from a desired set point.

Control theory thus offers a particularly compelling perspective for rationalizing the

behavior of developmental GRNs. Most are inherently dynamic, contain numerous unknown

components and interactions, and ultimately coordinate a manageable number of outputs.

This rationale inspired the conceptual model of ratiometric control used to interpret the R cell

fate decision analyzed in Chapter 3 (see Fig. 3.15B). After all, Pnt and Yan are transiently

expressed, subject to extensive but not fully characterized regulation, and appear to mediate

R cell fate transitions through a single output; the Pnt-to-Yan ratio. Similar reasoning

inspired the modeling framework used throughout Chapter 4. The breadth of experiments

pointed toward a dynamic phenomenon agnostic to the molecular detail of repressors and

their targets. Furthermore, among all systems surveyed, only Yan and Sens expression were

measurable. The resolution of analysis was therefore matched to the resolution of the data by

modeling the representative dynamics of a generic protein, subject to feedback at each of the

three levels that were experimentally surveyed (see Fig. 4.6). Combined, these approaches

reflect a growing trend of interpreting biological robustness from a control perspective [92].
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As molecular biology and engineering converge on common interests, it is important

to reconcile the strengths of both disciplines. Biology contributes a wealth of prior knowl-

edge and experimental techniques that frequently bewilder even the most seasoned engineers.

Engineering contributes quantitatively rigorous frameworks to systematically analyze, inter-

pret, predict, and design complex systems. The promise of successful integration prompts

continued dialogue to resolve any growing pains and advance the field of quantitative biology

as a whole.

Resource sharing must be a critical part of the conversation. Computational re-

searchers wield tremendous power to support the experimental community by publishing

user-friendly software that helps biologists quantify and analyze their results. They them-

selves stand to be duly rewarded in higher quality data. Contributing such resources to

the open-source ecosystem will also yield dividends in reproducibility, as the community

gradually converges on unified standards.

5.4. Software to support quantitative biologists

The research enclosed in this dissertation spawned several computational tools that

may catalyze future research. All of these resources have been made freely available online,

with the hope that their continued use and development will benefit the broader community of

quantitative biologists. The list below describes each tool and its high level functions. FlyEye

Silhouette is freely available via the Mac App Store, while all other software is accessible

via GitHub repositories mirrored between both my personal account and the Amaral and

Bagheri lab accounts. These repositories contain high level API documentation in addition

to a series of Jupyter notebooks that walk the user through a series of usage examples.

https://github.com/sebastianbernasek/
https://github.com/amarallab
https://github.com/bagherilab
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• FlyEye Silhouette: http://silhouette.amaral.northwestern.edu

GUI-based MacOS application for segmentation, quantification, and annotation of cell

nuclei in the Drosophila eye imaginal disc. Developed by Helio Tejedor in the Amaral lab.

• FlyEye Analysis: https://github.com/sebastianbernasek/flyeye

Python framework for analyzing data generated using FlyEye Silhouette. Core features in-

clude inference of cell developmental ages and analysis of the resultant expression dynamics.

Also provides tools to quantify expression heterogeneity and spatial patterns.

• FlyEye Clones: https://github.com/sebastianbernasek/clones

Python framework for automated mosaic analysis of Drosophila eye imaginal discs. Core

features will be integrated with future versions of FlyEye Silhouette.

• FlyEye SyClones: https://github.com/sebastianbernasek/syclones

Python framework for generating synthetic microscopy data that mimic key features of

mosaic eye imaginal discs.

• PolyTF Binding: https://github.com/sebastianbernasek/binding

Python framework for simulating the equilibrium occupancy of DNA binding sites by

one or more polymerizing transcription factors. Utilizes a C backend that efficiently

enumerates all possible microstates in a recursive fashion, enabling nested parallelization of

the main computational bottleneck. For systems of two or more transcription factors, the

implementation confers a major performance advantage over the sequential enumeration

strategy proposed by the manuscript that inspired the model [220].

• GeneSSA: https://github.com/sebastianbernasek/genessa

Python framework for exact stochastic simulation of gene regulatory network dynamics

[306]. Simulations are executed by a C backend optimized for performance on networks

http://silhouette.amaral.northwestern.edu
https://github.com/sebastianbernasek/flyeye
https://github.com/sebastianbernasek/clones
https://github.com/sebastianbernasek/syclones
https://github.com/sebastianbernasek/binding
https://github.com/sebastianbernasek/genessa
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with a narrow scope of pre-defined reaction propensity functions. The limited scope is

by design; GeneSSA prioritizes computational efficiency at the expense of flexibility by

explicitly hard coding a set of functional forms. This design places GeneSSA among the

most performant implementations of the exact stochastic simulation algorithm for several

common types of GRNs. The framework may be (and has been) extended to include

additional kinetic formulations as they are required.

Please see Appendix C for the data and code required to replicate all of the results

presented in this dissertation.
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ber, Ilaria Rebay, and Richard W. Carthew. A comparative study of Pointed and
Yan expression reveals new complexity to the transcriptional networks downstream of
receptor tyrosine kinase signaling. Dev. Biol., 385:263–278, 2014.

[86] Matthew Freeman. Feedback control of intercellular signalling in development. Nature,
408(November):313–319, 2000.

[87] Uri Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet., 8
(6):450–61, 2007.

[88] Marcelo Behar, Nan Hao, Henrik G Dohlman, and Timothy C Elston. Mathematical
and computational analysis of adaptation via feedback inhibition in signal transduction
pathways. Biophys. J., 93(3):806–21, 2007.

[89] Upinder S. Bhalla, Prahlad T. Ram, and Ravi Iyengar. MAP Kinase Phosphatase
As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network.
Science (80-. )., 297(5583):1018–1023, 2002.

[90] Raymond Cheong, Alex Rhee, C. J. Wang, Ilya Nemenman, and Andre Levchenko.
Information Transduction Capacity of Noisy Biochemical Signaling Networks. Science
(80-. )., 334(6054):354–358, 2011.

[91] Tau-Mu Yi, Hiroaki Kitano, and Melvin I Simon. A quantitative characterization of
the yeast heterotrimeric G protein cycle. Proc. Natl. Acad. Sci. U. S. A., 100(19):
10764–9, 2003.

[92] Mustafa Khammash. An engineering viewpoint on biological robustness, 2016.

[93] Justin J. Cassidy, Alexander J. Straughan, and Richard W. Carthew. Differential
masking of natural genetic variation by miR-9a in Drosophila. Genetics, 202(2):675–687,
2016.

[94] Justin J Cassidy, Aashish R Jha, Diana M Posadas, Ritika Giri, Koen J T Venken,
Jingran Ji, Hongmei Jiang, Hugo J Bellen, Kevin P White, and Richard W Carthew.
MiR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcrip-
tion factor. Cell, 155(7):1556–1567, 2013.

[95] Xin Li, Justin J Cassidy, Catherine A Reinke, Stephen Fischboeck, and Richard W
Carthew. A MicroRNA Imparts Robustness against Environmental Fluctuation during
Development. Cell, 137(2):273–282, 2009.

[96] Margaret S. Ebert and Phillip A. Sharp. Roles for microRNAs in conferring robustness
to biological processes. Cell, 149(3):515–524, 2012.

[97] CH H Waddington. Canalization of Development and the Inheritance of Acquired
Characters. Nature, 150(3811):563–565, 1942.



151

[98] K G Bateman. The genetic assimilation of four venation phenocopies. J. Genet., 56
(3):443–474, 1959.

[99] J M Rendel. Canalisation of the scute phenotype of Drosophila. Evolution (N. Y).,
13:425–439, 1959.

[100] J M Rendel, B L Sheldon, and D E Finlay. Selection for Canalization of the Scute
Phenotype. II. Am. Nat., 100(910):13–31, 1966.

[101] Willem Scharloo. Canalization: genetic and developmental aspects. Annu. Rev. Ecol.
Syst., 22(1991):65–93, 1991.

[102] R.B. Dun and A.S. Fraser. Selection for an Invariant Character - ’Vibrissa Number’ -
in the House Mouse. Nature, 182:1638 – 1640, 1958.

[103] G Gibson and David S. Hogness. Effect of Polymorphism in the Drosophila Regulatory
Gene Ultrabithorax on Homeotic Stability. Science (80-. )., 271(5246):200–203, 1996.

[104] Suzanne L Rutherford and Susan Lindquist. Hsp90 as a capacitor for morphological
evolution. Nature, 396(6709):336–342, 1998.

[105] Avigdor Eldar, Ruslan Dorfman, Daniel Weiss, Hilary Ashe, Ben-Zion Shilo, and
Naama Barkai. Robustness of the BMP morphogen gradient in Drosophila embryonic
patterning. Nature, 419(September):304–308, 2002.

[106] Charles M Denby, Joo Hyun Im, Richard C Yu, C. Gustavo Pesce, and Rachel B Brem.
Negative feedback confers mutational robustness in yeast transcription factor regulation.
Proc. Natl. Acad. Sci., 109(10):3874–3878, 2012.

[107] John L I V Hartman, Barbara Garvik, and Lee Hartwell. Principles for the Buffering
of Genetic Variation. Science (80-. )., 1001(2001):1–5, 2001.

[108] David C Marciano, Rhonald C Lua, Panagiotis Katsonis, Shivas R Amin, Christophe
Herman, and Olivier Lichtarge. Negative Feedback in Genetic Circuits Confers Evolu-
tionary Resilience and Capacitance. Cell Rep., 7(6):1789–1795, 2014.

[109] Hiroaki Kitano. Biological Robustness. Nat. Rev. Genet., 837(November):826–837,
2004.

[110] Jörg Stelling, Uwe Sauer, Zoltan Szallasi, Francis J. Doyle, and John Doyle. Robustness
of cellular functions, 2004.

[111] Mark L Siegal and Jun-Yi Leu. On the Nature and Evolutionary Impact of Phenotypic
Robustness Mechanisms. Annu. Rev. Ecol. Evol. Syst., 45:495–517, 2014.

[112] Mark L Siegal and Aviv Bergman. Waddington’s canalization revisited: developmental
stability and evolution. Proc. Natl. Acad. Sci. U. S. A., 99:10528–10532, 2002.



152

[113] Aviv Bergman and Mark L. Siegal. Evolutionary capacitance as a general feature of
complex gene networks. Nature, 424(6948):549–552, 2003.

[114] Michael Lynch. The evolution of genetic networks by non-adaptive processes. Nat.
Rev. Genet., 8(10):803–13, 2007.

[115] Andreas Wagner. How the global structure of protein interaction networks evolves.
Proc. Biol. Sci., 270(1514):457–66, 2003.

[116] Harley H. McAdams and Adam Arkin. It’s a noisy business! Genetic regulation at the
nanomolar scale, 1999.

[117] M A Nowak, M C Boerlijst, J Cooke, and John Maynard Smith. Evolution of genetic
redundancy. Nature, 388(6638):167–71, 1997.

[118] Andreas Wagner. Robustness against mutations in genetic networks of yeast. Nat.
Genet., 24(4):355–61, 2000.

[119] Dale Muzzey and Alexander van Oudenaarden. Quantitative Time-Lapse Fluorescence
Microscopy in Single Cells. Annu. Rev. Cell Dev. Biol., 25(1):301–327, 2009.

[120] Ernst H K Stelzer. Light-sheet fluorescence microscopy for quantitative biology. Nat.
Methods, 12(1):23–26, 2014.

[121] Thai V. Truong and Willy Supatto. Toward high-content/high-throughput imaging
and analysis of embryonic morphogenesis. Genesis, 49(7):555–569, 2011.

[122] Ian T. Simpson and David J. Price. Pax6; a pleiotropic player in development, 2002.

[123] T R Parody and M. A T Muskavitch. The pleiotropic function of Delta during
postembryonic development of Drosophila melanogaster. Genetics, 135(2):527–539,
1993.

[124] Ben Zion Shilo and Erez Raz. Developmental control by the Drosophila EGF receptor
homolog DER, 1991.

[125] T Xu and G M Rubin. Analysis of genetic mosaics in developing and adult Drosophila
tissues. Development, 117(4):1223–37, 1993.

[126] Tian Xu and Gerald M Rubin. The effort to make mosaic analysis a household tool.
Development, 139(24):4501–4503, 2012.

[127] T P Newsome, B Asling, and B J Dickson. Analysis of Drosophila photoreceptor axon
guidance in eye-specific mosaics. Development, 127(4):851–60, 2000.

[128] Nicole A. Theodosiou and Tian Xu. Use of FLP/FRT system to study Drosophila
development. Methods A Companion to Methods Enzymol., 14(4):355–365, 1998.

[129] Gary Struhl and Konrad Basler. Organizing activity of wingless protein in Drosophila.
Cell, 1993.



153

[130] K Halfar, C Rommel, H Stocker, and E Hafen. Ras controls growth, survival and
differentiation in the Drosophila eye by different thresholds of MAP kinase activity.
Development, 128(9):1687–96, 2001.

[131] A Tomlinson and G Struhl. Delta/Notch and Boss/Sevenless signals act combinatorially
to specify the Drosophila R7 photoreceptor. Mol. Cell, 7(3):487–95, 2001.

[132] L Yang and N E Baker. Role of the EGFR/Ras/Raf pathway in specification of
photoreceptor cells in the Drosophila retina. Development, 128(7):1183–91, 2001.

[133] Jianbin Huang, Shian Wu, Jose Barrera, Krista Matthews, and Duojia Pan. The Hippo
signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating
Yorkie, the Drosophila homolog of YAP. Cell, 122(3):421–434, 2005.

[134] Barry J. Thompson and Stephen M. Cohen. The Hippo Pathway Regulates the
bantam microRNA to Control Cell Proliferation and Apoptosis in Drosophila. Cell,
126(4):767–774, 2006.

[135] Mardelle Atkins. Drosophila Genetics: The Power of Genetic Mosaic Approaches. In
Methods Mol. Biol., volume 1893, pages 27–42. Humana Press, New York, NY, 2019.

[136] Wei Dai, Amy Peterson, Thomas Kenney, Haley Burrous, and Denise J. Montell.
Quantitative microscopy of the Drosophila ovary shows multiple niche signals specify
progenitor cell fate. Nat. Commun., 8(1):1244, 2017.

[137] Sebastian M. Bernasek, Jean-François Boisclair Lachance, Nicolás Peláez, Rachael
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APPENDIX A

Supporting information for Chapter 3

The experiments detailed in this section were conceived, designed, and conducted by

my collaborators, most notably Nicol’as Pel’aez and Jean-Francois Boisclair Lachance. They

are included here for completeness.

A.1. Genetics

The recombineered pnt-gfp BAC transgene inserted into the VK00037 landing site

was previously described in Boisclair-Lachance et al. (2014). Alleles pnt∆88 [200] and pnt2

(Bloomington Stock 2222) were used to render the endogenous pnt gene null in the presence

of pnt-gfp. A single copy of pnt-gfp rescued pnt∆88/pnt2 to full viability and fertility (Fig.

3.1B). Cell nuclei of developing eye-antennal discs were marked by recombining H2Av-mRFP

(Bloomington stock 23651) with pnt2. Experiments measuring wild type dynamics of Pnt-

GFP were done by dissecting eye discs from white prepupae carrying w1118 ; pnt-gfp/pnt-gfp

; pnt∆88/pnt2, H2Av-mRFP . Pnt isoform-specific expression was detected using enhancer

traps HS20 (gift from B. Shilo) and pnt1277 (Bloomington stock 837), which report PntP1 and

PntP2 transcription respectively by expressing LacZ [202]. pnt-gfp and pnt isoform-specific

expression were compared in white prepupae carrying w1118; pnt-gfp/pnt-gfp; HS20/+

and w1118;pnt-gfp/pnt-gfp; pnt1277/pnt1277. Pnt gene dosage experiments were done using

w1118; pnt-gfp/+ ; pnt∆88/pnt2 (1x pnt) and w1118; pnt-gfp/pnt-gfp ; pnt∆88/pnt2 (2x pnt).

Notch activity was conditionally reduced using the N ts1 temperature sensitive allele [307].

N ts1/N ts1 ; pnt-gfp/+ animals were raised at the permissive temperature (18 °C) and shifted
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to the restrictive temperature (28.5 °C) as third instar larvae for 24 h. Animals exposed to

the restrictive temperature that were transferred back to the permissive temperature had

roughened eye phenotypes and a notched wing phenotype as adults, consistent with effec-

tive inhibition of Notch activity. Control larvae of the same genotype were grown at the

permissive temperature until dissection. Both control and heat-treated larvae were sexed

and only N hemizygote males carrying N ts1/Y ; pnt-gfp/+ were dissected as white pre-

pupae. EGFR activity was conditionally reduced by placing the null allele egfrf24 - also

known as egfrCO [308] in trans to the thermo-sensitive allele egfrtsla [227], as previously

described [43]. The genotype was w1118; egfrtsla, pnt-gfp/egfr24, pnt-gfp. Ras activa-

tion was achieved using a transgene expressing a Ras1V 12 mutant and driven by a 3xsev

enhancer and promoter [229] as previously described [43]. Pnt-gfp in the Ras mutant back-

ground was measured using w1118; pnt-gfp, Sev > Rasv12/pnt-gfp;pnt2,H2Av-mRFP/+.

Controls animals carried w1118; pnt-gfp/pnt-gfp, pnt2, H2Av-mRFP/+. Yan mutant eye

clones were generated using the yan833 null allele [204], ey>FLP and the FRT40 crossover

point. Pnt+ tissue was labeled using the clonal marker Ubi > mRFPnls (Bloomington Stock

34500). Developing eyes were dissected from white prepupae carrying w, ey > FLP ; pnt-gfp,

yan833, FRT40A/pnt-gfp, Ubi > mRFPnls, FRT40A. Control discs to measure the GFP-

mRFP fluorophore bleed-through were obtained from flies carrying w, ey > FLP ; pnt-gfp,

Ubi > mRFPnls, FRT40A/pnt-gfp, FRT40A or w, ey > FLP ; pnt-gfp, Ubi > mRFPnls,

FRT40A/CyO.

A.2. Immunohistochemistry

Unless otherwise noted, Pnt-GFP and Yan were measured in developing animals raised

at 21 ° C, selected as white prepupae, and subsequently aged in humid chambers for 5-10 h.

Eye-antennal discs were dissected in PBS, and fixed in 4 % (w/v) paraformaldehyde/PBS
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for ∼45 min. Endogenous Yan protein was detected with the mouse monoclonal anti-Yan

antibody 8B12 (Developmental Studies Hybridoma Bank, 1:200 dilution) and the secondary

goat anti-mouse Pacific Blue antibody (Life Technologies, 1:200 dilution). Expression from

the HS20 and pnt1277 enhancer traps was detected using mouse anti-β-galactosidase 40-1a

(Developmental Studies Hybridoma Bank, 1:50 dilution). H2Av-mRFP was used as a nuclear

marker as previously described in Peláez et al. (2015). Discs were incubated in 1:1 (v/v)

PBS:VectaShield (Vector Laboratories) for 45 min, then in 100% VectaShield for an additional

45 min before mounting.

For experiments using yan mutant clones, N ts, or EGFRts alleles, nuclei were stained

with a 4’,6-diamidino-2-phenylindole (DAPI) nuclear marker. Samples were fixed in 4%

paraformaldehyde, rinsed with PBS-Tween 0.5%, and permeabilized with PBS-Triton X-100

0.1% for 20 minutes at room temperature. Permeabilization was important to allow DAPI

penetration without perturbing the fluorescence of the Pnt-GFP protein. After permeabi-

lization, eye discs were incubated in a blocking solution containing PBS-Tween 0.1% and

1% normal goat serum for 30 minutes at room temperature. Primary and secondary anti-

bodies were incubated each for 2 hours at room temperature. Antibodies used with DAPI

were: mouse anti-Yan 8B12 (DHSB, 1/500) and goat anti-mouse Cy3 (1/2000, Jackson Im-

munoresearch). Discs were mounted in 0.5% n-propyl-gallate, 0.1M Tris pH 8.0 and 90%

glycerol.

Samples were kept in the dark at -20 °C and imaged no later than 18-24 hr after

fixation. In all cases, 1024 x 1024 16-bit images were captured using either a Zeiss LSM880

or a Leica SP5 confocal microscope equipped with 40X oil objectives. During imaging, discs

were oriented with the equator parallel to the x-axis of the image. Optical slices were set

at 0.8m slices (45-60 optical slices) with an additional digital zoom of 1.2-1.4 to completely

image eye discs from basal to apical surfaces. Images recorded a region of at least 6 rows of
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ommatidia on each side or the dorsal-ventral eye disc equator. All discs for a given condition

were fixed, mounted, and imaged in parallel to reduce measurement error.

A.3. Quantification of expression levels

Expression dynamics were inferred from confocal image stacks using an updated ver-

sion of an existing segmentation and annotation pipeline [43]. The new pipeline includes

FlyEye Silhouette; an open-source package for macOS that integrates our image segmenta-

tion algorithm with a GUI for cell type annotation. Subsequent analysis and visualization

procedures were implemented in Python.

In all cases, cell segmentation was performed using either H2Av-mRFP or DAPI

signals as a reference channel for identification of cell nuclei boundaries. Each layer of the

reference channel was segmented independently. A single contour containing each unique cell

was manually selected and assigned a cell type using a custom graphic user interface. DAPI-

stained discs were segmented using a separate script based on the watershed algorithm in

order to mitigate the effect of bright spots caused by DAPI accumulation in nucleoli. Further

care was taken to avoid annotating contours containing such nucleoli. For each annotated cell

contour, expression measurements were obtained by normalizing the mean fluorescence of the

Pnt-GFP and Yan antibody channels by the mean fluorescence of the reference channel. This

normalization serves to mitigate variability due to potentially uneven sample illumination,

segment area, and in the case of His-RFP, differences in protein expression capacity between

cells.

A.4. Conversion of distance to time

Cell positions along the anterior-posterior axis were mapped to developmental time as

described previously [43, 213]. This is predicated on two assumptions: the furrow proceeds
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at a constant rate of one column of R8 neurons per two hours, and minimal cell migration

occurs. We find no reason to discard these assumptions.

For each disc, Delaunay triangulations were used to estimate the median distance

between adjacent columns of R8 neurons [309]. We used the median rather than the mean

distance, as was used in our previous study, because it minimized the influence of non-

adjacent R8s that were falsely identified by the triangulation. Dividing the furrow velocity

of 2 h per column by this median distance yields a single conversion factor from position

along the anterior-posterior axis to developmental time. This factor was applied to all cell

measurements within the corresponding disc, yielding expression time series. Notably, these

are not single cell dynamics, but rather aggregate dynamics across the development time

course of a cell population.

A.5. Computation of moving averages and confidence intervals

Moving averages were computed by first-order Savitzky-Golay filtration [310]. This

method augments the simple windowing approach used in our previous study [43] by enabling

visualization of expression trends at early time-points that are otherwise obscured by large

window sizes. A secondary first-order filtration with one-fifth the original window size was

applied to smooth lines for visualization purposes.

None of our conclusions are sensitive to our choice of filtration or smoothing method

[43]. Primary window sizes of 250 and 75 cells were used for reporting the expression of

multipotent and differentiated cells, unless noted otherwise. Confidence intervals for the

moving average were inferred from the 2.5th and 97.5th percentile of 1000 point estimates

of the mean within each window. Point estimates were generated by bootstrap resampling

(with replacement) the expression levels within each window.
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A.6. Alignment of expression data

Cells were aligned with a reference population by shifting them in time. The magni-

tude of this shift was determined by maximizing the cross-correlation of progenitor Pnt-GFP

expression Y (t) with the corresponding reference time series X(t). Rather than raw mea-

surements, moving averages within a window of ten cells were used to improve robustness

against noise. This operation amounts to:

argmax
dt

E
[(Y (t+ dt)− µY )(X(t+ dt)− µX)

σY σX

]
(A.1)

where, µ and σ are the mean and standard deviation of each time series, and dt is the time

by which the population should be shifted.

For each experimental treatment, a disc was randomly chosen and shifted in time

such that time zero corresponds to the first annotated R8 neuron. This disc then served as

the reference population for the alignment of all subsequent biological replicates within the

treatment. Similarly, different experimental treatments (e.g. control and perturbation) were

aligned by first aligning the discs within each treatment, then aggregating all cells within

each treatment and repeating the procedure with the first treatment serving as the reference.

This approach differs from the previous implementation of our pipeline in which

discs were manually aligned by the inflection point of their Yan-YFP expression profiles [43].

Manual alignment entails arbitrary prioritization of certain dynamic features over others.

Our revised protocol yields consistent, reproducible alignment of expression time series that

equally weighs the entire time course. The automated approach is more principled but less

robust than the manual approach. Specifically, it fails when dynamic forms qualitatively

differ between experimental treatments. In these instances, we revert to manual alignment

using the inflection point of Pnt-GFP induction as a reference.
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A.7. Analysis of yan clones

We used ey>FLP and FRT40A to generate yan833 null clones within 23 eye discs

carrying the Pnt-GFP transgene (see Section A.1). The chromosome carrying the wildtype

yan allele was marked with a Ubi-mRFPnls transgene, enabling automated detection of

subpopulations with distinct yan gene dosages, each characterized by a distinct level of

mRFP fluorescence. Discs were dissected, fixed, and co-stained with DAPI prior to confocal

imaging. Images of 36 unique vertical cross-sections spanning non-overlapping cells were

collected in total.

We deployed the framework developed in Chapter 2 to measure the expression level of

each reporter in each nucleus and automatically label each measurement as mutant, heterozy-

gous, or homozygous for the Ubi-mRFPnls clonal marker. For each segment, Ubi-mRFPnls

and Pnt-GFP fluorescence was quantified by normalizing the average intensity of all pix-

els within the respective fluorescence channel by the average DAPI fluorescence. Segments

containing less than 250 pixels were removed.

Fluorescence bleedthrough between the RFP and GFP channels was visually apparent

in these discs. To confirm our suspicion, control clones were generated in six wildtype yan eye

discs co-expressing Ubi-mRFPnls and Pnt-GFP. These are the same discs as those analyzed in

Chapter 2. We used the correction strategy presented in Section 2.4 to systematically correct

for bleedthrough from the Ubi-mRFPnls reporter into the GFP channel. The correction suc-

cessfully eliminated any detectable difference in Pnt-GFP expression between Ubi-mRFPnls

genotypes in the wildtype yan control discs (see Fig. 2.4C). The same procedure was applied

to all measurements of yan null clones included in Fig. 3.10H.

As described in Section 2.4.2, we limited the analysis to cells of similar developmental

age that were located immediately posterior to the MF in each eye disc. These restrictions
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served to buffer against differences in developmental context and focus attention on the region

of elevated Pnt-GFP expression. Cells residing on the border of each clone were excluded

from all comparisons to mitigate edge effects. The remaining measurements were aggregated

across all eye discs for statistical comparison between clonal genotypes.

A.8. Parameterization of equilibrium binding model

We restricted our focus to a regulatory element comprised of 12 binding sites in which

only the first site carried the ETS designation. We retain the same parameterization of Yan

binding proposed by Hope, Rebay, and Reinitz (2017): αY = -9.955 kcal mol-1, βY = -5.837

kcal mol-1, and γY = -7.043 kcal mol-1. We parameterized Pnt binding thermodynamics to

provide balanced competition between Pnt and Yan in the absence of any SAM-mediated

polymerization of Pnt. That is, we set Pnt binding affinities such that the transition from

Pnt to Yan occupancy occurs when Pnt and Yan concentrations are approximately equal.

While a parameterization using experimentally measured data would improve predictive

accuracy, our aim here is primarily to obtain insight. The model used to generate Fig. 3.9D-

F assumes that Pnt binds individual sites with elevated affinities αP = 0.96(αY + γY ) and

βP = 0.96(βY + γY ). The model used to generate Fig. 3.9A-C uses these same elevated

binding affinities for Yan, while setting γY = 0 kcal mol-1. Qualitatively, our results are not

sensitive to this parameterization.

A.9. Visualization of relative Pnt and Yan expression in Notch mutant discs

Visualizations were constructed by applying a smoothing operation to maximum

intensity projections across confocal layers spanning progenitors, and then mapping the

absolute difference in Pnt-GFP and Yan antibody fluorescence to a diverging color scale.

The smoothing operation consists of three sequential applications of a grey-closing filter
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followed by a single pass of a three-pixel wide median filter. This procedure dampens noise.

Raw image fluorescence intensities were normalized to a 0-1 scale before application of any

filters, so the maximum possible difference between Pnt-GFP and Yan fluorescence channels

is unity. The color scale was truncated to a range of -0.3 to 0.3 for visualization purposes.

No post-processing was applied to the maximum intensity projections used to generate the

visualization.

A.10. Analysis of periodic spatial patterns in Notch mutant discs

Progenitor cells were selected from a 1.75 h window immediately posterior to the

morphogenetic furrow. This window corresponds to approximately one column of eventual

ommatidia. The window is identifiable in Notch mutant discs because the MF serves as a

reference. Digital spatial signals were assembled by sampling progenitor log2-transformed

Pnt-to-Yan ratios, X, as a function of cell position along the dorso-ventral axis, y. Both

autocorrelation analysis and spectral decomposition were applied to these signals.

Autocorrelation functions were assembled by computing the moving average of ex-

pression similarity, C, as a function of dorso-ventral separation distance, d:

Cij =
(Xi − E[X])(Xj − E[X])

E[X2]− E[X]2
(A.2)

dij = |yi − yj| (A.3)

where E denotes the expected value, and i and j are indexed over all cells in order of increasing

separation distance. Moving averages and confidence intervals were computed as described

previously, with a window size of 50 sequential values.

Spatial signals were decomposed into spectral components via the Lomb-Scargle peri-

odogram using the AstroML software package [311]. These periodograms were used rather
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than Fourier decomposition because they enable spectral decomposition of irregularly sam-

pled signals [312]. Significance thresholds were inferred from the 95th percentile of peak

spectral powers detected during repeated decomposition of 1000 null signals. Null signals

were constructed by resampling signal intensities while maintaining constant sampling times.
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APPENDIX B

Supporting information for Chapter 4

B.1. Model system

All experiments were conducted in and by the lab of Professor Richard Carthew at

Northwestern University. Yan-YFP expression dynamics in wildtype and yan∆miR-7 animals

were measured by Rachael Bakker, while sfGFP-Sens expression levels in the wing disc were

measured and analyzed by Ritika Giri. All other experiments were conceived, designed,

executed, and analyzed by Justin Cassidy. This section explicitly details these experiments

for purposes of reproducibility, and should not be mistaken for contributions of my own.

For all experiments, Drosophila melanogaster was raised using standard lab conditions

and food. Stocks were either obtained from the Bloomington Stock Center, from listed labs,

or were derived in the Carthew laboratory. All experiments used female animals unless stated

otherwise.

B.2. Genetics

Experiments were performed using either homozygous mutant animals or trans-heterozygous

mutants. Table B.1 lists each of the trans-heterozygous allele combinations that were used.

Table B.1. Mutant and transgenic alleles

miR-9aE39/miR-9aJ22 hairy1/hairy41

glass2 /glass60j wgSp-1/wg+

miR-7∆1/Df(2R)exu1 dcr-1+/dcr-1Q1147X

dcr-1K43X/dcr-1Q1147X dcr-1W94X/dcr-1Q1147X

dcr-1Q396X/dcr-1Q1147X ago1+/ago1Q127X

ago1W894X/ago1Q127X ago1T908M/ago1Q127X

ago1E808K/ago1Q127X ago1R937C/ago1Q127X
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B.2.1. IPC ablation

To genetically ablate the insulin producing cells (IPCs) of the brain, yw animals were

constructed bearing an ILP2-GAL4 gene on chromosome III and a UAS-Reaper (Rpr) gene

on chromosome I or II. Rpr is a pro-apoptotic gene that is sufficient to kill cells in which it

is expressed [313]. ILP2-GAL4 fuses the insulin-like peptide 2 gene promoter to GAL4, and

specifically drives its expression in brain IPCs [256]. Examination of ILP2-GAL4 UAS-Rpr

larval brains showed that they almost completely lacked IPCs (data not shown). Previous

studies found that IPC-deficient adults are normally proportioned but of smaller size [256].

It takes almost twice the length of time to complete juvenile development, and juveniles have

a 40% elevation in blood glucose, consistent with these insulin-like peptides being essential

regulators of energy metabolism in Drosophila [256]. We confirmed that this method of IPC

ablation results in small but normally proportioned adults, and it takes almost twice the

normal time to develop into adults (Fig. 4.1B,C). For all wildtype controls, we tested animals

bearing either the ILP2-GAL4 or UAS-Rpr gene in their genomes.

B.2.2. Ribosomopathy

To reduce levels of cytoribosomes in cells, we made use of loss-of-function mutations in genes

encoding various ribosomal proteins (RPs), which cause the “Minute” syndrome of dominant,

haploinsufficient phenotypes, including prolonged development [289]. A total of 64 RP genes

exhibit a Minute syndrome when mutated [288]. We selected a subset of these genes to reduce

ribosomes. Since one of these, RpS3, encodes an RP that also functions in DNA repair [314],

we tested it along with other RP genes in certain genetic experiments. The mutations used

were: RpS3Plac92 [289], RpS32 [315], RpS131 [289], and RpS15M(2)53 [316]. Wildtype control

animals were w1118.
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B.2.3. yan ∆miR-7-YFP

The recombineered Yan-YFP BAC transgene was previously described [204]. We modified

the gene by site-directed recombineering to mutate the four identified miR-7 binding sites

within the yan (aop) gene [16]. The binding sites and mutations are shown in Figure B.1.

The mutated transgene (Y an∆miR-7-Y FP ) was shuttled into the P[acman] vector [292], and

inserted into the same genomic landing site on chromosome 3 (attP2) as Yan-YFP. One

copy of the His2Av-mRFP transgene was recombined with the Y an∆miR-7-Y FP or Yan-YFP

transgene in order to normalize YFP expression to a housekeeping protein, in this case histone

H2A [43]. The His2Av-mRFP Yan-YFP (Y an∆miR-7-Y FP ) chromosome was homozygosed,

and placed in a yanER443 / yanE884 mutant background so that the endogenous yan gene did

not make any protein.

Figure B.1. Mutation of the four identified miR-7 binding sites in the yan transcript.
The seed sequence is highlighted in red. The sequence of the mutations, which are localized to the
seeds, are shown in green.

B.2.4. sfGFP-sens and sfGFP-sens m1m2

The recombineered sfGFP-sens BAC transgene was generated as described [94], and the

transgene was landed in the genome at VK37 (22A3). The transgene was mutated by site-

directed recombineering as described [94] to delete the two miR-9a binding sites within
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the sens gene (sfGFP -sensm1m2). This transgene was also landed at VK37. The sfGFP-

sens (sfGFP -sensm1m2) chromosome was homozygosed, and placed in a sensE1 null mutant

background to ensure that endogenous sens did not make any protein.

B.3. Analysis of mutant phenotypes

B.3.1. Eye mispatterning

Genetic mosaic animals bearing miR-7∆1 homozygous mutant eyes were generated using the

FLP-FRT system. The animals’ genotype was: w ey-FLP; FRT42D miR-7∆ 1 / FRT42D

GMR-Hid cl. Matching wildtype control animals’ genotype was: w ey-FLP; FRT42D P[w+]

/ FRT42D GMR-Hid cl. Individuals also contained either ILP2-GAL4 alone (control) or

ILP2-GAL4 UAS-Rpr (IPC ablated) transgenes. All individuals were raised at 29 °C. Eye

roughening was scored as previously described [95]. For RpS3 interactions with miR-7, trans-

heterozygous miR-7 mutants and matched wildtype controls (Df(2R)exu1/+) were raised at

29 °C to adulthood. The RpS32 allele was combined with miR-7 alleles. Eye roughening was

scored as previously described [95]. Genetic mosaic animals bearing ago1W894 homozygous

mutant eyes were generated using the FLP-FRT system. The animals’ genotype was: w

ey-FLP; FRT42D ago1W894 / FRT42D GMR-Hid cl. Matching wildtype control animals’

genotype was: w ey-FLP; FRT42D P[w+] / FRT42D GMR-Hid cl. Individuals also contained

either ILP2-GAL4 alone (control) or ILP2-GAL4 UAS-Rpr (IPC ablated) transgenes. For

experiments with Yan transgenics, animals bearing one copy of either the YanACT or YanWT

[82] transgene also contained either ILP2-GAL4 alone (control) or ILP2-GAL4 UAS-Rpr

(IPC ablated) transgenes.
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B.3.2. R7 cell analysis in the eye

Individuals were synchronized at the larval-pupal transition, and incubated for a further

48 hours at 23 °C. Eyes were dissected from pupae, and were fixed for 40 min in 4%

paraformaldehyde/PBS. They were permeabilized by incubation in PBS + 0.1% Triton-

X100 (PBST) and co-incubated with mouse anti-Prospero (1:10 in PBST, MR1A MAb,

Developmental Studies Hybridoma Bank) to stain R7 and bristle cells plus rat anti-Elav

(1:10 in PBST, 7E8A10 MAb, Developmental Studies Hybridoma Bank) to stain all R cells.

After 60 min, eyes were washed 3 times in PBST and incubated for 60 min in goat anti-mouse

Alexa546 and goat anti-rat Alexa633 (1:100 in PBST, Invitrogen). Eyes were washed 3 times

in PBST, cleared in Vectashield (Vector Labs), and mounted for microscopy. Samples were

scanned and imaged in a Leica SP5 confocal microscopy system. Drosophila compound eyes

have approximately 800 ommatidia. We scored all ommatidia for each imaged eye sample.

The number of scored ommatidia per sample ranged between 481 and 837 (with a median

of 594). Fewer than 800 ommatidia were scored per sample because in most cases, some eye

tissue was lost during dissection and handling.

B.3.2.1. Bristle scoring. Animals of the correct genotype were allowed to age for 3 days

after eclosion. The number of scutellar bristles was counted for each individual. Since these

large bristles are positioned with high regularity and number on the scutellum, there was

no ambiguity in counting the scutellar bristle number. For wg experiments, the number of

sternopleural bristles was counted for each individual. Again, the position and number of

these bristles is highly regular.
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B.3.3. Relative viability

Females bearing either a dcr-1Q1147X or ago1Q127X mutant chromosome over a balancer

chromosome were crossed to males bearing mutant dcr-1 or ago1 chromosomes over a balancer

chromosome. F1 progeny were raised and the numbers of animals that reached either pupal or

adult stage were tallied. If the non-balancer chromosome is 100% viable when homozygous,

then 33.33% of the F1 progeny would not carry a balancer chromosome. We calculated

viability in this manner, relative to balancer viability. Replicate crosses were performed and

analyzed. Between 457 and 776 F1 animals (median = 647) were counted in the replicate

ago1 crosses. Between 234 and 380 F1 animals (median 285) were counted in the replicate

dcr-1 crosses.

B.3.4. Population statistics

Population proportions were compared using a Chi-square test with Yatesćorrection and

Fisherś exact test. Both gave similar results. All tests involving multiple experimental

groups were Bonferroni corrected. In sev experiments, R7 cell counts were compared via

one-way ANOVA with Bonferroni correction. Relative viabilities were compared using a

Mann-Whitney-Wilcoxon test with Bonferroni correction. These tests were performed using

Prism 7 (GraphPad) software. P-values shown in figures are presented from tests with the

most conservative value shown if more than one test was performed on data. * p < 0.05; **

p < 0.01; *** p < 0.001; **** p < 0.0001

B.4. Quantification of sfGFP-Sens in the wing disc

Wing discs from white-prepupal females were dissected in ice-cold Phosphate Buffered

Saline (PBS). Discs were fixed in 4% paraformaldehyde in PBS for 20 minutes at 25 °C
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and washed with PBS containing 0.3% Tween-20. Then they were stained with 0.5 µg/ml

4,6-diamidino-2-phenylindole (DAPI) and mounted in Vectashield. Discs were mounted apical

side up and imaged with identical settings using a Leica TCS SP5 confocal microscope. All

images were acquired at 100x magnification at 2048 x 2048 resolution with a 75 nm x-y pixel

size and 0.42 µm z separation. Scans were collected bidirectionally at 400 MHz and 6x line

averaged. Wing discs of different genotypes were mounted on the same microscope slide and

imaged in the same session for consistency in data quality.

For each wing disc, five optical slices containing Sens-positive cells along the anterior

wing margin were chosen for imaging and analysis. A previously documented custom MAT-

LAB script was used to segment nuclei in each slice of the DAPI channel [43]. High intensity

nucleolar spots were smoothed out to merge with the nuclear area to prevent spurious seg-

mentation. Next, cell nuclei were identified by thresholding based on DAPI channel intensity.

Segmentation parameters were optimized to obtain nuclei with at least 100 pixels and no

more than 4000 pixels.

The majority of cells imaged did not reside within the proneural region and therefore

displayed background levels of fluorescence scattered around some mean level. We calculated

the “mean background” in the green channel of each disc individually. We did this by fitting a

Gaussian distribution to the population and finding the mean of that fit. In order to separate

sfGFP-Sens-positive cells, we chose a cut-off percentile based on the normal distribution,

below which cells were deemed sfGFP-Sens-negative. We set this cut-off at the 84th percentile

for all analysis since empirically it provided the most accurate identification of proneural

cells. To normalize measurements across tissues and experiments, this value was subtracted

from the total measured fluorescence for all cells in that disc. Only cells with values above

the threshold for sfGFP fluorescence were assumed Sens positive (usually 30% of total cells)

and carried forward for further analysis.
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Analysis of sfGFP-Sens fluorescence was performed using two independent approaches.

1) For each genotype, 1000 point-estimates were made of the median fluorescence level in

cells. Point estimates were generated by bootstrap resampling with replacement of the

cell samples within each genotype. Point estimates from wildtype sfGFP-Sens were then

randomly paired with point estimates from miR-9a-resistant sfGFP-Sens to derive a set

of 1000 point-estimates of the fold-change in median sfGFP-Sens expression. Confidence

intervals for the average fold-change in sfGFP-Sens expression were inferred from the 0.5th

and 99.5th percentile of these point estimates. 2) The distributions of fluorescence from

wildtype sfGFP-Sens and mutant sfGFP -Sensm1m2 cell populations were compared using a

Mann-Whitney-Wilcoxon test implemented in R. By calculating the difference between all

randomly paired cell samples from wildtype versus mutant, the location shift is estimated

as the median of the difference between a sample from sfGFP-Sens and a sample from

sfGFP -Sensm1m2. Confidence intervals for the shift were inferred from the 2.5th and 97.5th

percentile of the set of differences.

We analyzed >10 replicate wing discs for each treatment. In total, we measured

wildtype sfGFP-Sens expression in 4,518 cells from wildtype RpS13 discs and 4,379 cells from

discs heterozygous mutant for RpS131. We measured mutant sfGFP -Sensm1m2 expression

in 4,518 cells from wildtype RpS13 discs and 4,379 cells from discs heterozygous mutant for

RpS131.

B.5. Quantification of Yan-YFP dynamics in the eye

White-prepupal eye discs were dissected, fixed, and imaged by confocal microscopy

for YFP and RFP fluorescence, as previously described [43]. Briefly, samples fixed in 4%

paraformaldehyde were kept in the dark at -20 °C and imaged no later than 18-24 h after

fixation. In all cases, 1024 x 1024 16-bit images were captured using a Leica SP5 confocal



186

microscope equipped with 40X oil objective. During imaging, discs were oriented with the

equator parallel to the x-axis of the image. Optical slices were set at 0.8 µm slices (45-60

optical slices) with an additional digital zoom of 1.2-1.4 to completely image eye discs from

basal to apical surfaces. Images recorded a region of at least 6 rows of ommatidia on each side

or the dorsal-ventral eye disc equator. All discs for a given condition were fixed, mounted,

and imaged in parallel to reduce measurement error. Sample preparation, imaging, and

analysis were not performed under blind conditions. Image data was processed for automatic

segmentation and quantification of RFP and YFP nuclear fluorescence as previously described

[43]. Briefly, cell segmentation was performed using a H2Av-mRFP marker as a reference

channel for identification of cell nuclei boundaries. Each layer of the reference channel was

segmented independently. A single contour containing each unique cell was manually selected

and assigned a cell type using a custom graphic user interface. For each annotated cell

contour, expression measurements were obtained by normalizing the mean pixel fluorescence

of the YFP channel by the mean fluorescence of the His-RFP channel. This normalization

serves to mitigate variability due to potentially uneven sample illumination, segment area,

and differences in protein expression capacity between cells. We assigned cell-type identities

to segmented nuclei by using nuclear position and morphology, two key features that enable

one to unambiguously identify eye cell types without the need for cell-specific markers [209].

This task was accomplished using FlyEye Silhouette; an open-source package for macOS that

integrates our image segmentation algorithm with a GUI for cell type annotation. Subsequent

analysis and visualization procedures were implemented in Python.

Cell positions along the anterior-posterior axis were mapped to developmental time

as described previously [43]. This depends on two assumptions that have been extensively

validated in the literature. One, the furrow proceeds at a constant velocity of one column of

R8 neurons per two hours, and two, minimal cell migration occurs. For each disc, Delaunay
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triangulations were used to estimate the median distance between adjacent columns of R8

neurons. Dividing the furrow velocity by the median distance yields a single conversion

factor from position along the anterior-posterior axis to developmental time. This factor

was applied to all cell measurements within the corresponding disc. This method does not

measure single cell dynamics, but rather aggregate dynamics across the developmental time

course of cells in the eye.

Moving averages were computed by evaluating the median value among a collection

of point estimates for the mean generated within a sliding time window. Confidence intervals

were inferred from the 2.5th and 97.5th percentile of the same point estimates. Each point

estimate was generated via a hierarchical bootstrapping technique in which we resampled

the set of eye discs, then resampled the aggregate pool of cell measurements between them.

This novel method enhances our existing approach [43] by capturing variation due to the

discretized nature of eye disc sample collection. Using the existing method, the error bars

are considerably narrower (not shown). A window size of 500 sequential progenitor cells was

used in all cases, but our conclusions are not sensitive to our choice of window size.

Yan level measurements were pooled across multiple replicate eye discs. An automated

approach was used to align these replicate samples in time. First, a disc was randomly chosen

to serve as the reference population for the alignment of all subsequent replicates. Cells from

each replicate disc were then aligned with the reference population by shifting them in time

(see Section A.6).

Different experimental treatments (e.g. wildtype and miR-7 null) were aligned by first

aligning the discs within each treatment, then aggregating all cells within each treatment

and repeating the procedure with the first treatment serving as the reference. We analyzed

four to seven replicate eye discs for each treatment in two separate experiments. In total,

we measured wildtype Yan-YFP levels in 4,518 cells in normally metabolizing samples and
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4,379 cells in slowly metabolizing samples. We measured mutant Y an∆miR-7-Y FP levels in

5,382 cells in normally metabolizing samples and 6,716 cells in slowly metabolizing samples.

B.6. Simulation procedure

B.6.1. Simulation of protein expression dynamics

Default parameter values were based on approximate transcript and protein synthesis and

turnover rates for animal cells reported in the literature [317], while gene activation and decay

rates were arbitrarily set to a significantly faster timescale. Default feedback strengths for

repressors acting at the gene, transcript, or protein levels were chosen such that ∼25-50% of

simulations failed to reach the threshold under normal conditions when one of two identical

repressors was lost. Population-wide expression dynamics were estimated by simulating 5000

output trajectories in response to a three-hour transient step input to the gene activation

rate. Simulations were performed using a custom implementation of the stochastic simulation

algorithm [306] (see Appendix 5.4). The algorithm constrains solutions to the set of discrete

positive values, consistent with linearization about a basal level of zero gene activity. This

simplifying assumption is based on the near-zero basal activities expected in the experimental

systems, but is not required to support the conclusions of the model (Figs. 4.16D and 4.18D).

B.6.2. Evaluation of error frequencies and changes in expression dynamics

Gene expression trajectories were simulated both with (full repression) and without (partial

repression) a second repressor. The time point at which the full-repression simulations mean

level reached 30% of its maximum value was taken to be the commitment time. At this time,

a threshold for developmental success was set at the 99th percentile of protein levels subject

to full-repression. Error frequencies were obtained by evaluating the fraction of simulated
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protein levels that exceeded this threshold. Per this definition, the minimum possible error

frequency is one percent. For simplicity we subtracted this percentage point from all reported

error frequencies.

Protein expression dynamics were compared by evaluating the fraction of partially-

repressed simulation trajectories in excess of the 99th percentile of fully-repressed trajectories

at each point in time. These fractions were then averaged across the time course, beginning

with the reception of the input signal and ending at the previously defined commitment time.

Each fraction may be thought of as the instantaneous error frequency, and their average

reflects the extent to which the expression dynamics differ between the two sets of simulated

trajectories (Fig. B.2).

Figure B.2. Graphical depiction of the method used to quantify the impact of repressor
loss on protein expression dynamics. (A) Confidence bands span the 1st to 99th quantiles of
protein levels simulated under full repression (grey) and under partial repression (purple), where a
repressor is lost. The dashed purple line denotes the lower bound of the purple confidence band. The
symbol τ denotes the commitment time as defined previously. (B) Loss of a repressor causes protein
overexpression E(t), which is calculated as the fraction of simulations that exceed the confidence
band observed under full repression (grey) at a given time point. Orange-brown color scale reflects
the value of E(t) for each time point in the time course. Percent overexpression is calculated as a
percent of simulations that exceed the confidence band integrated over the entire time course. A
maximum of 100% overexpression would occur when all simulations exceed the confidence band at
all timepoints.

B.7. Dependence of model parameters on metabolic conditions

IPC ablation reduces cellular glucose consumption. Presumably this would affect either

the production and consumption of ATP or the production and consumption of substrates for

RNA and protein synthesis (or both). The precise effects are unknown, so we independently
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modeled each scenario. Since ATP concentration remains fairly constant when respiration is

limited [285], ATP flux (and ATP synthesis) is assumed to decrease. Because transcription,

translation, and protein degradation all require ATP turnover, we halved their rate parameters

under conditions of reduced glucose consumption. Under conditions of reduced substrate

availability for RNA/protein synthesis, we assumed that only transcription and translation

rates are affected by limiting fluxes of nucleotides and amino acids. We assumed only the

translation rate is affected under conditions of reduced ribosome number. These assumptions

are encoded in the rate parameters as shown in Table B.2.

Table B.2. Reaction rate parameter dependence on environmental conditions

Condition

Reaction Normal Reduced ATP Reduced substrates Reduced ribosomes

Transcription k2 k2/2 k2/2 k2

Translation k3 k3/2 k3/2 k3/2
Protein decay γ3 γ3/2 γ3 γ3

In all cases, feedback strengths were reduced in order to account for the intermedi-

ate processes abstracted by each feedback element. Feedback strength parameters ηi were

reduced four-fold under conditions of reduced energy metabolism and reduced RNA/protein

substrate availability. This scaling assumes that both transcription and translation occur

within the arbitrarily complex regulatory motifs represented by each repressor. This is a

reasonable assumption for repressor proteins such as transcription factors and kinases. For

RNA repressors such as microRNAs, feedback strength parameters could instead be reduced

only two-fold to account for their reduced transcription rates. However, microRNAs must be

transcribed, processed, and act with effector proteins in order to repress their targets. These

fourfold reductions in feedback strength correspond to fourfold reduction of the transcriptional

feedback gain KC1 and twofold reduction in the post-transcriptional and post-translational

feedback gains KC2 and KC3. Feedback strength parameters ηi were only reduced two-fold
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under reduced protein synthesis conditions. This implies that the transcriptional and post-

transcriptional feedback gains KC1 and KC2 decrease twofold while the post-translational

feedback gain KC3 remains constant. Each of these dependencies are summarized in Table

B.3. The corresponding dependencies for our two alternate models based upon nonlinear

transcription kinetics were analogous to those used in the linear model, and are listed in

Tables B.4 and B.5. The half-maximal occupancy level and Hill coefficients of transcriptional

repressors were assumed to be independent of growth rate.

Table B.3. Feedback strength dependence on environmental conditions

Condition

Feedback strengths Normal Reduced ATP Reduced substrates Reduced ribosomes

Transcriptional η1 η1/4 η1/4 η1/2
Post-transcriptional η2 η2/4 η2/4 η2/2
Post-translational η3 η3/4 η3/4 η3/2

Table B.4. Two-state model dependence on environmental conditions

Condition

Reaction Normal Reduced ATP Reduced ribosomes

Transcription kR kR/2 kR
Translation kP kP /2 kP /2
Protein decay γP γP /2 γP
Transcriptional feedback ηG ηG/4 ηG/2
Feedback on mRNA ηR ηR/4 ηR/2
Feedback on protein ηP ηP /4 ηP /2

Table B.5. Hill kinetics model dependence on environmental conditions

Condition

Reaction Normal Reduced ATP Reduced ribosomes

Transcription kR kR/2 kR
Translation kP kP /2 kP /2
Protein decay γP γP /2 γP
Feedback on mRNA ηR ηR/4 ηR/2
Feedback on protein ηP ηP /4 ηP /2



192

APPENDIX C

Reproduction data and code

The work presented in this thesis is supported by large volumes of both experimental

and simulated data. All of these datasets have been deposited along with their associated

documentation in the Northwestern Arch data repository. See Table C.1 for a list of the

available data.

Table C.1. Reproduction data

Topic DOI

Chapter 2 https://doi.org/10.21985/N2F207

Chapter 3 https://doi.org/10.21985/N24Q81

Chapter 4 https://doi.org/10.21985/N2J464

In addition, all code used to analyze and visualize the data is publicly available

via GitHub, mirrored between both my personal account and the Amaral and Bagheri lab

accounts. Table C.2 lists the relevant repository for each chapter of this thesis, along with

the software required to execute the corresponding code (see Appendix 5.4). Each repository

contains collections of Jupyter notebooks that walk users through the process of generating

all of the figures presented in the corresponding chapter. Combined, these resources provide a

means to reproduce all of the results presented in both this thesis and the various manuscripts

derived from it.

Table C.2. Reproduction code

Topic Repository Required software

Chapter 2 /clones FlyEye Clones
Chapter 3 /pnt yan ratio FlyEye Analysis, TF Binding
Chapter 4 /gram FlyEye Analysis, GeneSSA

https://github.com/sebastianbernasek/

https://doi.org/10.21985/N2F207
https://doi.org/10.21985/N24Q81
https://doi.org/10.21985/N2J464
https://github.com/sebastianbernasek/
https://github.com/amarallab
https://github.com/bagherilab
https://github.com/sebastianbernasek/clones
https://github.com/sebastianbernasek/pnt_yan_ratio
https://github.com/sebastianbernasek/gram
https://github.com/sebastianbernasek/
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